Skip to main content
Log in

Clay Minerals in Early Amphibole Weathering: Tri- to Dioctahedral Sequence as a Function of Crystallization Sites in the Amphibole

  • Published:
Clays and Clay Minerals

Abstract

The early stages of amphibole weathering result in the crystallization of several clay mineral species: tri- and dioctahedral smectites, interstratified dioctahedral kaolinite-smectite (K-S), and halloysite. Each clay mineral crystallizes into specific microsites which develop from etch pits along specific crystallographic directions in the host amphibole. Two types of microsites are recognized according to their location in the amphibole crystal and their clay mineral crystallizations. The first type is a plane surface related to the (110) amphibole cleavages where saponite particles crystallize in a characteristic honeycomb texture. The second type is a ‘sawtooth’ (001) fracture surface generated by etch-pit coalescence where (1) platy K-S particles crystallize directly in contact with the amphibole at the top of ‘teeth’, (2) halloysite particles with tubular habits crystallize directly in contact with the amphibole on the side of the ‘teeth’, and/or on the K-S particles, and (3) montmorillonite crystallizes in the central part of the (001) fracture as a layer with honeycomb texture in contact with the K-S platelets located at the top of ‘teeth’. The microtextural relationships between the clay minerals and their host mineral suggest the following crystallization sequence: (1) saponite and montmorillonite crystallize first on the (110) and (001) surfaces, respectively; (2) as amphibole dissolution proceeds perpendicular to the (001) fracture planes, montmorillonites continue to form in the middle part of the widening fracture whereas K-S crystallizes on the ‘sawtooth’ termination; (3) in the last stage of weathering, tubular halloysite crystallizes on the side of the ‘teeth’, and/or on the K-S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, M.M. and Vairinho, M. (1990) Amphibole alteration to vermiculite in a weathering profile of gabbro-diorite. Pp. 493–500 in: Soil Micromorphology (L.A. Douglas, editor). Developments in Soil Science, 19. Elsevier, Amsterdam.

    Google Scholar 

  • Bain, D.C., Roe, M.J., Duthie, D.M.L. and Thomson, C.M. (2001) The influence of mineralogy on weathering rates and processes in an acid-sensitive granitic catchment. Applied Geochemistry, 16, 931–937.

    Article  Google Scholar 

  • Banfield, J.F. and Barker, W.W. (1994) Direct observation of reactant-product interfaces formed in natural weathering of exsolved, defective amphibole to smectite: Evidence for episodic, isovolumetric reactions involving structural inheritance. Geochimica et Cosmochimica Acta, 58, 1419–1429.

    Article  Google Scholar 

  • Baronnet, A. (1997) Silicate microstructures at the sub-atomic scale. Comptes Rendus de l’Académie des Sciences, Série II a: Sciences de la Terre et des Planètes, 324, 157–172.

    Google Scholar 

  • Brantley, S.L. and Chen, Y. (1995) Chemical weathering rates of pyroxenes and amphiboles. Pp. 119–172 in: Chemical Weathering Rates of Silicate Minerals (A.F. White and S.L. Brantley, editors). Reviews in Mineralogy, 31, Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Caillaud, J., Proust, D., Righi, D. and Martin, F. (2004) Fe-rich clays in a weathering profile developed from serpentinite. Clays and Clay Minerals, 52, 779–791.

    Article  Google Scholar 

  • Cole, W.F. and Lancucki, C.J. (1976) Montmorillonite pseudomorphs after amphibole from Melbourne, Australia. Clays and Clay Minerals, 24, 79–83.

    Article  Google Scholar 

  • Delvaux, B., Herbillon, A.J., Vielvoye, L. and Mestdagh, M.M. (1990) Surface properties and clay mineralogy of hydrated halloysitic soil clays. II. Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays. Clay Minerals, 25, 141–160.

    Article  Google Scholar 

  • Dreher, P. and Niederbudde, E.A. (2000) Characterization of expandable layer silicates in humic-ferralic cambisols (umbrept) derived from biotite and hornblende. Journal of Plant Nutrition and Soil Science, 163, 447–453.

    Article  Google Scholar 

  • Eggleton, R.A. (1975) Nontronite topotaxial after hedenbergite. American Mineralogist, 60, 1063–1068.

    Google Scholar 

  • Eggleton, R.A. (1982) Weathering of enstatite to talc through a sequence of transitional phases. Clays and Clay Minerals, 30, 11–20.

    Article  Google Scholar 

  • Eggleton, R.A. and Smith, K.L. (1983) Silicate alteration mechanisms. Sciences Géologiques, Mémoire, 71, 45–53.

    Google Scholar 

  • Ildefonse, Ph. (1980) Mineral facies developed by weathering of a meta-gabbro, Loire Atlantique (France). Geoderma, 24, 257–273.

    Article  Google Scholar 

  • Ildefonse, Ph., Copin, E. and Velde, B. (1979) A soil vermiculite formed from a meta-gabbro, Loire-Atlantique, France. Clay Minerals, 14, 201–210.

    Article  Google Scholar 

  • IMA (1978) Nomenclature of amphiboles. Mineralogical Magazine, 42, 533–563.

    Article  Google Scholar 

  • Islam, M.R., Peuraniemi, V., Aario, R. and Rojstaczer, S. (2002) Geochemistry and mineralogy of saprolite in Finnish Lapland. Applied Geochemistry, 17, 885–902.

    Article  Google Scholar 

  • Jolicoeur, S., Ildefonse, Ph. and Bouchard, M. (2000) Kaolinite and gibbsite weathering of biotite within saprolites and soils of Central Virginia. Soil Science Society of America Journal, 64, 1118–1129.

    Article  Google Scholar 

  • Kampf, N., Schneider, P. and Mello, P.F. (1995) Alteracoes mineralogicas em sequencia vertissolo-litossolo na Regiao da Campanha no Rio Grande do Sul. Revista Brasileira de Ciencia do Solo, 19, 349–357.

    Google Scholar 

  • Lanson, B. (1993) DECOMPXR, X-ray Decomposition Program. ERM, Poitiers, France.

    Google Scholar 

  • Luce, R.W., Bartlett, R.W. and Parks, G.A. (1972) Dissolution kinetics of magnesium silicates. Geochimica et Cosmochimica Acta, 36, 35–50.

    Article  Google Scholar 

  • Price, J.R., Velbel, M.A. and Patino, L.C. (2005) Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance. Geological Society of America Bulletin, 117, 783–794.

    Article  Google Scholar 

  • Proust, D. (1982) Supergene alteration of hornblende in an amphibolite from Massif Central (France). Pp. 357–364 in: Proceedings of the 7th International Clay Conference, Bologna-Pavia, 1981 (H. van Olphen and F. Veniale, editors). Developments in Sedimentology, 35, Elsevier, Amsterdam.

    Google Scholar 

  • Proust, D. (1985) Amphibole weathering in a glaucophaneschist (Ile de Groix, Morbihan, France). Clay Minerals, 20, 161–170.

    Article  Google Scholar 

  • Proust, D. and Velde, B. (1978) Beidellite crystallization from plagioclase and amphibole precursors: local and long-range equilibrium during weathering. Clay Minerals, 13, 199–209.

    Article  Google Scholar 

  • Reynolds, R.C. (1985) NEWMOD, a computer program for the calculation of one-dimensional diffraction powders of mixed-layer clays. R.C. Reynolds, 8 Brook Rd., Hanover, New Hampshire 03755 USA, 315 pp.

    Google Scholar 

  • Righi, D. and Meunier, A. (1995) Origin of clays by rock weathering and soil formation. Pp. 43–161 in: Origin and Mineralogy of Clays. Clays and the Environment (B. Velde, editor). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Righi, D., Terribile, F. and Petit, S. (1998) Pedogenic formation of high-charge beidellite in a vertisol from Sardinia (Italy). Clays and Clay Minerals, 46, 167–177.

    Article  Google Scholar 

  • Righi, D., Terribile, F. and Petit, S. (1999) Pedogenic formation of kaolinite-smectite mixed layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy). Clays and Clay Minerals, 47, 505–514.

    Article  Google Scholar 

  • Schott, J., Berner, R.A. and Sjöberg, E.L. (1981) Mechanism of pyroxene and amphibole weathering. I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta, 45, 2123–2135.

    Article  Google Scholar 

  • Velbel, M.A. (1989) Weathering of hornblende to ferruginous products by a dissolution-reprecipitation mechanism: petrography and stoichiometry. Clays and Clay Minerals, 37, 515–524.

    Article  Google Scholar 

  • Wakatsuki, T. and Rasyidin, A. (1992) Rates of weathering and soil formation. Geoderma, 52, 251–263.

    Article  Google Scholar 

  • Watanabe, T., Sawada, Y., Russell, J.D., McHardy, W.J. and Wilson, M.J. (1992) The conversion of montmorillonite to interstratified halloysite-smectite by weathering in the Omi acid clay deposit, Japan. Clay Minerals, 27, 159–173.

    Article  Google Scholar 

  • Wegner, M.W. and Christie, J.M. (1985) Chemical etching of amphiboles and pyroxenes. Physics and Chemistry of Minerals, 12, 86–89.

    Article  Google Scholar 

  • Wilson, M.J. (1987) Soil smectites and related interstratified minerals: Recent developments. Pp. 167–173 in: Proceedings of the International Clay Conference, Denver, 1985 (L.G. Schultz, H. van Olphen and F. A. Mumpton, editors). The Clay Minerals Society, Bloomington, Indiana.

    Google Scholar 

  • Wilson, M.J. (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39, 233–266.

    Article  Google Scholar 

  • Wilson, M.J. and Farmer, V.C. (1970) A study of weathering in a soil derived from a biotite-hornblende rock. II. The weathering of hornblende. Clay Minerals, 8, 435–444.

    Article  Google Scholar 

  • Zhang, H. and Bloom, P.R. (1999a) The pH dependence of hornblende dissolution. Soil Science, 164, 624–632.

    Article  Google Scholar 

  • Zhang, H. and Bloom, P.R. (1999b) Dissolution kinetics of hornblende in organic acid solutions. Soil Science Society of America Journal, 63, 815–822.

    Article  Google Scholar 

  • Zhang, H., Bloom, P.R., Nater, E.A. and Erich, M.S. (1996) Rates and stoichiometry of hornblende dissolution over 115 days of laboratory weathering at pH 3.6–4.0 and 25°C in 0.01 M lithium acetate. Geochimica et Cosmochimica Acta, 60, 941–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Proust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proust, D., Caillaud, J. & Fontaine, C. Clay Minerals in Early Amphibole Weathering: Tri- to Dioctahedral Sequence as a Function of Crystallization Sites in the Amphibole. Clays Clay Miner. 54, 351–362 (2006). https://doi.org/10.1346/CCMN.2006.0540306

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2006.0540306

Key Words

Navigation