Skip to main content
Log in

The Nature of Co in Synthetic Co-substituted Goethites

  • Published:
Clays and Clay Minerals

Abstract

The crystallochemical features of Co in Co-substituted goethite solid-solutions prepared by two different procedures have been studied using infrared, X-ray photoelectron and electron energy loss spectroscopies. It was found that the path followed for the synthesis of Co-substituted goethite determines the oxidation state of Co in the goethite structure. Thus, in the solid-solution prepared by precipitation with Na2CO3 of an Fe(II) aqueous solution containing Co(II) cations, followed by the aerial oxidation of the precipitate, the Co cations were found to be divalent, whereas trivalent Co was incorporated into the goethite obtained by ageing a solution containing Fe(III) and Co(II) cations precipitated by the addition of KOH. This different behavior is explained by the higher pH of goethite formation in the latter case, which favors the oxidation of the Co(II) cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burns, R.G. (1976) Uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica et Cosmochimica Acta, 40, 95–102.

    Article  Google Scholar 

  • Burriel, F., Arribas, S., Lucena, F. and Hernández, J. (1983) Cobalto. Pp. 671–675 in: Química Analítica Cualitativa, Paraninfo S.A., Madrid.

    Google Scholar 

  • Cornell, R.M. (1991) Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure. Clay Minerals, 26, 427–430.

    Article  Google Scholar 

  • Cornell, R.M. and Giovanoli, R. (1989) Effect of cobalt on the formation of crystalline iron oxides from ferrihydrite in alkaline media. Clays and Clay Minerals, 37, 65–70.

    Article  Google Scholar 

  • Cornell, R.M. and Schwertmann, U. (1996) Cation substitution. Pp. 35–52 in: The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH, Weinheim, Germany.

    Google Scholar 

  • Falqui, A., Serin, V., Calmels, L., Snoeck, E., Corrias, A. and Nenas, G. (2003) EELS investigation of FeCo/SiO2 nanocomposities. Journal of Microscopy-Oxford, 210, 80–88.

    Article  Google Scholar 

  • Gasser, U.G., Jeanroy, E., Mustin, C., Barres, O., Nüesch, R., Berthelin, J. and Herbillon, A.J. (1996) Properties of synthetic goethites with Co for Fe substitution. Clay Minerals, 31, 465–476.

    Article  Google Scholar 

  • Gerth, J. (1990) Unit cell dimensions of pure and trace metal-associated goethites. Geochimica et Cosmochimica Acta, 54, 363–371.

    Article  Google Scholar 

  • Iwasaki, K. and Yamamura, T. (2002) Whisker-like goethite nanoparticles containing cobalt synthesized in a wet process. Materials Transactions, 43, 2097–2103.

    Article  Google Scholar 

  • Jiménez Mateos, J.M., Macias, M., Morales, J. and Tirado, J.L. (1990) Mn and Co substitution in δ-FeOOH and its decomposition products. Journal of Materials Science, 25, 5207–5214.

    Article  Google Scholar 

  • Jiménez, V.M., Espinós, J.P. and González-Elipe, A.R. (1998) Control of the stoichiometry in the deposition of cobalt oxides on SiO2. Surface and Interface Analysis, 26, 62–71.

    Article  Google Scholar 

  • Kühnel, R.A., Roorda H.J. and Sttensma J.J. (1975) The crystallinity of minerals — A new variable in pedogenetic processes: A study of goethite and associated silicates in latentes. Clays and Clay Minerals, 23, 349–354.

    Article  Google Scholar 

  • Leapman, R.D., Grunes, L.A. and Fejes, P.L. (1982) Study of the L2,3 edges in the 3d transitions metals and their oxides by electron-energy-loss spectroscopy with comparison to theory. Physical Review B, 26, 614–635.

    Article  Google Scholar 

  • Lloyd, S.J., Botton, G.A. and Stobbs, M. (1995) Changes in the iron white-line ratio in the electron energy-loss spectrum of iron-copper multilayers. Journal of Microscopy, 180, 288–293.

    Article  Google Scholar 

  • Mcardell, C.S., Stone, A.T. and Tian, J. (1998) Reaction of EDTA and related aminocarboxylate chelating agents with CoIIIOOH (heterogenite) and MnIIOOH (manganite). Environmental Science & Technology, 32, 2923–2930.

    Article  Google Scholar 

  • Murad, E. and Schwertmann, U. (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Minerals, 18, 301–312.

    Article  Google Scholar 

  • Norrish, K. (1975) Geochemistry and mineralogy of trace elements. Pp. 55–81 in: Trace Elements in the Soil-Plant-Animal (A.R. Nicholas and D.J. Egan, editors). Academic Press, London, New York.

    Chapter  Google Scholar 

  • Nuñez, N.O., Tartaj, P., Morales, M.P., Pozas, R., Ocaña, M. and Serna, C.J. (2003) Preparation, characterization, and magnetic properties of Fe-based alloy particles with elongated morphology. Chemistry of Materials, 15, 3558–3563.

    Article  Google Scholar 

  • Pearson, D.H., Fultz, B. and Ahn, C.C. (1988) Measurements of 3d state occupancy in transition-metals using electron-energy loss spectrometry. Applied Physics Letters, 53, 1405–1407.

    Article  Google Scholar 

  • Pease, D.M., Fasihuddin, A., Daniel, M. and Budnick, J.I. (2001) Method of linearizing the 3d L-3/L-2 white line ratio as a function of magnetic moment. Ultramicroscopy, 88, 1–16.

    Article  Google Scholar 

  • Pozas, R., Ocaña, M., Morales, M.P. and Serna, C.J. (2002) Uniform nanosized goethite particles obtained by aerial oxidation in the FeSO4—Na2CO3 system. Journal of Colloid and Interface Science, 254, 87–94.

    Article  Google Scholar 

  • Pozas, R., Ocaña, M., Morales, M.P., Tartaj, P., Nuñez, N.O. and Serna, C.J. (2004) Synthesis of acicular Fe-Co nanoparticles and the effect of Al addition on their magnetic properties. Nanotechnology, 15, S190–S196.

    Article  Google Scholar 

  • Retgers, W. (1889) Zeitschrif fur Physikalische Chemie, 3, 497.

    Google Scholar 

  • Schulze, D.G. (1984) The influence of aluminium on iron oxides: VIII. Unit-Cell dimensions of Al-substituted goethites and estimation of Al from them. Clays and Clay Minerals, 32, 36–44.

    Article  Google Scholar 

  • Schulze, D.G. and Schwertmann, U. (1984) The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites. Clay Minerals, 19, 521–539.

    Article  Google Scholar 

  • Schulze, D.G. and Schwertmann, U. (1987) The influence of aluminium on iron oxides: XIII. Properties of goethites synthesized in 0.3 M KOH at 25°C. Clay Minerals, 22, 83–92.

    Article  Google Scholar 

  • Schwertmann, U. (1984) The influence of aluminium on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl. Clay Minerals, 19, 9–19.

    Article  Google Scholar 

  • Schwertmann, U. and Taylor, R.M. (1977) Iron Oxides. Pp. 145–180 in: Minerals in Soil Environments (J. B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Schwertmann, U. and Taylor, R.M. (1989) Iron Oxides. Pp. 380–438 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin, USA.

    Google Scholar 

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ocaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozas, R., Rojas, T.C., Ocaña, M. et al. The Nature of Co in Synthetic Co-substituted Goethites. Clays Clay Miner. 52, 760–766 (2004). https://doi.org/10.1346/CCMN.2004.0520611

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2004.0520611

Key Words

Navigation