Skip to main content
Log in

Five-Coordinate Aluminum in Allophane

  • Published:
Clays and Clay Minerals

Abstract

Samples of Silica Springs allophane from Tongariro National Park, New Zealand, having Al/ Si atomic ratios in the range 1.1-1.9, were studied by 27Al nuclear magnetic resonance (NMR) spectroscopy with high field strength (9.4 and 11.7 T) and fast magic-angle spinning (MAS) (9-13 kHz). Spectra for all samples show peaks for 6- and 4-coordinate Al and also for 5-coordinate Al. For 1 sample, the peak for 5-coordinate Al is dominant. Use of 2 instruments and 2 field strengths allowed the integrity of the spectra and the assignment of 5-coordinate Al to be verified. The “true” chemical shift (after a small correction for quadrupolar shift) observed for 5-coordinate Al in Silica Springs allophane is 36 ± 1 ppm, which is consistent with shifts reported for 5-coordination in well-characterized crystalline structures. We suggest that 5-coordination in Silica Springs allophane is associated with the edges of fragments of incomplete octahedral sheets that are bonded to disordered, though more complete, curved tetrahedral sheets in the primary particles of this allophane. Other allophanes with Al/Si < 2, and which are poor in octahedra relative to tetrahedra, may also have significant Al in 5-coordinate sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agafonov V, Kahn A, Michel D, Perez y Jorba M. 1986. Crystal structure of a new digermanate: Al2Ge2O7. J Solid State Chem 62(3):402–404.

    Article  Google Scholar 

  • Alemany LB, Massiot D, Sherriff BL, Smith ME, Taulelle F. 1991. Observation and accurate quantification of 27A1 MAS NMR spectra of some Al2SiO5 polymorphs containing sites with large quadrupole interactions. Chem Phys Lett 177: 301–306.

    Article  Google Scholar 

  • Álvarez LJ, Leon LE, Sanz JF, Capitáno MJ, Odriozola JA. 1995. Computer simulation of γ-Al2O3 microscrystal. J Phys Chem 99:17872–17876.

    Article  Google Scholar 

  • Araki T, Finney JJ, Zoltait T. 1968. The crystal structure of augelite. Am Mineral 53:1096–1103.

    Google Scholar 

  • Bleam WF, Dec SF, Frye JS. 1989. 27Al solid-state nuclear magnetic resonance study of five-coordinated aluminium in augelite and senegalite. Phys Chem Miner 16:817–820.

    Article  Google Scholar 

  • Burnham CW, Buerger MJ. 1961. Refinement of the crystal structure of andalusite. Z Krist 115:269–290.

    Article  Google Scholar 

  • Childs CW, Inoue K, Seyama H, Soma M, Theng BKG, Yuan G. 1997. X-ray photoelectron spectroscopic characterization of Silica Springs allophane. Clay Miner 32:565–572.

    Article  Google Scholar 

  • Childs CW, Parfitt RL, Newman RH. 1990. Structural studies of Silica Springs allophane. Clay Miner 25:329–341.

    Article  Google Scholar 

  • Coster D, Blumenfeld AL, Fripiat JJ. 1994. Lewis acid sites and surface aluminium in aluminas and zeolites: A high-resolution NMR study. J Phys Chem 98:6201–6211.

    Article  Google Scholar 

  • Cruikshank MC, Dent Glasser LS. 1985. A penta-co-ordinat-ed aluminate dimer; X-ray crystal structure. J Chem Soc, Chem Commun 84–85.

    Google Scholar 

  • Cruikshank MC, Dent Glasser LS, Barri SAI, Popletti IJE 1986. Penta-co-ordinated aluminium: A solid-state N.M.R. Study. J Chem Soc, Chem Commun 23–24.

    Google Scholar 

  • De Witte BM, Grobet PJ, Uytterhoeven JB. 1995. Pentacoor-dinated aluminium in noncalcined amorphous aluminosili-cates, prepared in alkaline and acid mediums. J Am Chem Soc 99:6961–6965.

    Google Scholar 

  • Duffy SJ, vanLoon GW. 1995. Investigations of aluminium hydroxyphosphates and activated sludge by 27A1 and 31P MAS NMR. Can J Chem 73:1645–1659.

    Article  Google Scholar 

  • Farmer VC, Fraser AR, Tait JM. 1979. Characterization of the chemical structures of natural and synthetic alumino-silicate gels and sols by infrared spectroscopy. Geochim Cosmochim Acta 43:1417–1420.

    Article  Google Scholar 

  • Fitzgerald JJ, Dec SF, Hamza AI. 1989. Observation of five-coordinated Al in pyrophyllite dehydroxylate by solid-state 27Al NMR spectroscopy at 14 T. Am Mineral 74:1405–1408.

    Google Scholar 

  • Gilson I-P, Edwards GC, Peters AW, Rajagopalan K, Worms-becher RF, Roberie TG, Shatlock MP. 1987. Penta-co-ordinated aluminium in zeolites and aluminosilicates. J Chem Soc, Chem Commun 91–92.

    Google Scholar 

  • Goodman BA, Russell JD, Motez B, Oldfield E, Kirkpatrick RJ. 1985. Structural studies of imogolite and allophanes by aluminium-27 and silicon-29 nuclear magnetic resonance spectroscopy. Phys Chem Miner 12:342–346.

    Article  Google Scholar 

  • He H, Barr TL, Klinowski J. 1995. ESCA and solid-state NMR studies of allophane. Clay Miner 30:201–209.

    Article  Google Scholar 

  • Jarchow O, Klaska K-H, Schenk-Strauss H. 1985. Die Kristallstrukturen von NdAlGe2O7 und NdGaGe2O7. Z Kristallogr 172:159–166.

    Article  Google Scholar 

  • Keegan TD, Araki T, Moore PB. 1979. Senegalite, Al2(OH)3(H2O)(PO4), a novel structure type. Am Mineral 64:1243–1247.

    Google Scholar 

  • Kellberg L, Linsten M, Jakobsen HJ. 1991. 27Al1H cross-polarization and ultrahigh-speed 27AL MAS NMR spectroscopy in the characterization of USY zeolites. Chem Phys Lett 182:120–126.

    Article  Google Scholar 

  • Kohn SC, Dupree R, Mortuza MG, Henderson CMB. 1991. NMR evidence for five- and six-coordinated aluminium fluoride complexes in F-bearing aluminosilicate glasses. Am Mineral 76:309–312.

    Google Scholar 

  • Kunath-Fandrei G, Bastow TJ, Hall JS, Jager C, Smith ME. 1995. Quantification of aluminium coordinations in amorphous aluminas by combined central and satellite transition magic angle spinning NMR spectroscopy. J Phys Chem 99: 15138–15141.

    Article  Google Scholar 

  • MacKenzie KJD, Bowden ME, Meinhold RH. 1991. The structure and thermal transformations of allophanes studied by 29Si and 27Al high-resolution solid-state NMR. Clays Clay Miner 39:337–346.

    Article  Google Scholar 

  • Massiot D, Kahn-Harari A, Michel D, Muller D, Taulelle F. 1990. Aluminium-27 MAS NMR of Al2Ge2O7 and La-AlGe2O7: Two pentacoordinated aluminium environments. Magn Reson Chem 28:S82–S88.

    Article  Google Scholar 

  • Müller D, Gessner W, Samoson A, Lippmaa E, Scheler G. 1986. Solid-state 27Al NMR chemical shift and quadrupole coupling data for condensed AlO4 tetrahedra. J Chem Soc, Dalton Trans 1277–1281.

    Google Scholar 

  • Parfitt R. 1990. Allophane in New Zealand—A review. Aust J Soil Res 28:343–360.

    Article  Google Scholar 

  • Risbud SH, Kirkpatrick RJ, Taglialavore AP, Montez B. 1987. Solid-state NMR evidence of 4-, 5-, and 6-fold aluminium sites in roller-quenched SiO2-Al2O3 glasses. J Am Ceram Soc 70:00–02.

    Article  Google Scholar 

  • Rocha J, Klinowski J. 1991. 27Al solid-state NMR spectra of ultrastable zeolite Y with fast magic-angle spinning and 1H-27Al cross-polarization. J Chem Soc, Chem Commun 1121–1122.

    Google Scholar 

  • Samoson A. 1985. Satellite transition high-resolution NMR of quadrupolar nuclei in powders. Chem Phys Lett 119:29–32.

    Article  Google Scholar 

  • Sato RK, McMillan PF, Dennison P, Dupree R. 1991. High-resolution 27Al and 29Si MAS NMR investigation of SiO2-A12O3 glasses. J Phys Chem 95:4483–4489.

    Article  Google Scholar 

  • Schmücker M, Schneider H. 1996. A new approach on the coordination of Al in non-crystalline gels and glasses of the system Al2O3-SiO2. Ber Bunsenges Phys Chem 100: 1550–1553.

    Article  Google Scholar 

  • Simon S, Van Moorsei GJMP, Kentgens APM, De Boer E. 1995. High fraction of penta-coordinated aluminium in amorphous and crystalline aluminium borates. Solid State NMR 5:163–173.

    Article  Google Scholar 

  • Smith ME, Steuernagel S. 1992. A multinuclear magnetic resonance examination of the mineral grandidierite. Solid State Nuclear Magn Reson 1:175–183.

    Article  Google Scholar 

  • Stephenson DA, Moore PB. 1968. The crystal structure of grandidierite, (Mg,Fe)Al,SiBO9. Acta Cryst B24:1518–1522.

    Article  Google Scholar 

  • Theng BKG, Russell M, Churchman GJ, Parfitt RL. 1982. Surface properties of allophane, imogolite and halloysite. Clays Clay Miner 30:143–149.

    Article  Google Scholar 

  • Wada K. 1980. Mineralogical characteristics of Andisols. In: Theng BKG, editor. Soils with variable charge. Lower Hutt: NZ Soc Soil Sci. p 87–107.

    Google Scholar 

  • Wada K. 1989. Allophane and imogolite. In: Dixon JB, Weed SB, editors. Minerals in soil environments, 2nd ed. Madison: Soil Sci Soc Am. p 1051–1087.

    Google Scholar 

  • Wada K. 1995. Structure and formation of non- and para-crystalline aluminosilicate clay minerals: A review. In: Churchman GJ, Fitzpatrick RW, Eggleton RA, editors. Clays controlling the environment. Proc Int Clay Conf.; 1993: Adelaide, Australia. Melbourne: CSIRO. p 443–448.

    Google Scholar 

  • Wells N, Childs CW, Downes CJ. 1977. Silica Springs, Ton-gariro National Park, New Zealand—Analyses of the spring water and characterisation of the alumino-silicate deposit. Geochim Cosmochim Acta 41:1497–1506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childs, C.W., Hayashi, S. & Newman, R.H. Five-Coordinate Aluminum in Allophane. Clays Clay Miner. 47, 64–69 (1999). https://doi.org/10.1346/CCMN.1999.0470107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1999.0470107

Key Words

Navigation