Skip to main content
Log in

Applying X-Ray Geothermometer Diffraction to a Chlorite

  • Published:
Clays and Clay Minerals

Abstract

A new method is proposed for applying the chlorite geothermometer using X-ray diffraction (XRD) data. A linear correlation has been found between the (001) basal spacing of chlorite and its “crystallization” temperature. The basal spacing values were corrected for an increase of Al(IV) with Fe enrichment (Fe/Fe + Mg), when the Fe(II) value of chlorite is >2.6 in the formula unit. The regression coefficient of the best fit is r = 0.95. Only 2 Bragg lines need to be measured for application of the proposed technique: the (001) and (060) X-ray spacing. The proposed method is applied to 19 chlorite samples from 4 different geothermal fields. The temperatures of chlorite formation obtained with the present method and those calculated by the expressions formulated by Cathelineau (1988) and Kranidiotis and MacLean (1987) are presented. The method’s validity was also tested on geothermal chlorites from the literature, and the results show good agreement with previous experimental trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbate E, Passerini P, Zan L. 1995. Strike-slip faults in a rift area: A transect in the Afar Triangle, East Africa. Tectonophysics 241:67–97.

    Article  Google Scholar 

  • Alt JC, Honnorez J, Laverne C, Emmermann R. 1986. Hydrothermal alteration of a 1 Km section through the upper oceanic crust, deep sea drilling project hole 504B: Mineralogy chemistry, and evolution of seawater-basalt interactions. J Geophys Res 91, 10:309–335.

    Google Scholar 

  • Aquater. 1994a. Tendaho Geothermal Project: Well TD-3: S Lorenzo in Campo (Italy): Government of the Republic of Italy Ministry of Foreign Affairs and Government of Ethiopia Ministry of Mines and Energy.

    Google Scholar 

  • Aquater, 1994b. Tendaho Geothermal Project: Well TD-1, TD-2. S Lorenzo in Campo (Italy): Government of the Republic of Italy Ministry of Foreign Affairs and Government of Ethiopia Ministry of Mines and Energy.

    Google Scholar 

  • Aspinall WP, Michael MO, Tomblin JE 1976. Evidence for fluid bodies beneath the Sulphur Springs geothermal region, St. Lucia, West Indies. Geophys Res Lett 3:87–90.

    Article  Google Scholar 

  • Bailey SW. 1972. Determination of chlorite compositions by X-ray spacings and intensities. Clays Clay Miner 20:381–388.

    Article  Google Scholar 

  • Baldi P, Bertini G, Ceccarelli A, Dini I, Ridolfi A, Rocchi G. 1995. Geothermal research in the Monteverdi Zone (western border of the Larderello Geothermal Field). Proc World Geothermal Congress; Florence, Italy 2:693–696.

    Google Scholar 

  • Battaglia S, Gianelli G, Rossi R, Cavarretta G. 1991. The sulphur springs geothermal field, St. Lucia, Lesser Antilles: Hydrothermal mineralogy of wells SL-1 and SL-2. J South Am Earth Sciences 4:1–12.

    Article  Google Scholar 

  • Bence AE, Albee AL. 1968. Empirical correction factors for the electron microanalysis of silicate and oxides. J Geol 76: 382–403.

    Article  Google Scholar 

  • Bettison LA, Schiffman P. 1988. Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. Am Mineral 73:62–76.

    Google Scholar 

  • Bettison-Varga LA, MacKinnon IDR. 1989. Comparison of microanalytical techniques used in the characterization of mixed layer chlorite/smectite from the Point Sal ophiolite. Clay Miner Soc 26th Annu Meet.

    Google Scholar 

  • Bevins RE, Robinson D, Rowbotham G. 1991. Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. J Metamorphic Geol 9:711–721.

    Article  Google Scholar 

  • Brindley GW. 1961. Kaolin, serpentine and kindred minerals. In: Brown G, editor. The X-ray identification and crystal structures of clay minerals. London: Mineral Soc. p 51–131.

    Google Scholar 

  • Cathelineau M. 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485.

    Article  Google Scholar 

  • Cathelineau M, Nieva D. 1985. A chlorite solid solution geothermometer The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244.

    Article  Google Scholar 

  • De Caritat P, Hutcheon I, Walshe JL. 1993. Chlorite geother-mometry: A review. Clays Clay Miner 41,2:219–239.

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J. 1962. Rock forming minerals. 3. Sheet silicates. New York: J Wiley. p 270.

    Google Scholar 

  • Di Paola GM. 1972. The Ethiopian Rift Valley (between 7°00’ and 8°40’ lat. North). Bull Volcanol 36(4):517–559.

    Article  Google Scholar 

  • Electroconsult ELC. 1986. Exploitation of Langano-Aluto geothermal resources. Feasibility report, Milan, Italy. 87 p.

    Google Scholar 

  • Foster MD. 1962. Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414A:1–33.

    Google Scholar 

  • Gianelli G, Bertini G. 1993. Natural hydraulic fracturing in the Larderello Geothermal Field: Evidence from Well MV5A. Boll Soc Geol It 112:507–512.

    Google Scholar 

  • Gianelli G, Teklemariam M. 1993. Water-rock interaction processes in the Aluto-Langano geothermal field (Ethiopia). J Volcan Geoth Res 56:429–445.

    Article  Google Scholar 

  • Helmold KP, Van de Kamp P. 1984. Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez mountains, California. In: McDonald D, Surdam R, editors. Clastic digenesis. Am Assoc Petrol Geol. p 239–276.

    Google Scholar 

  • Hey MH. 1954. A new review of the chlorites. Mineral Mag 30:277–292.

    Google Scholar 

  • Hochstein MP. Caldwell G, Kifle K. 1983. Minimum age of the Alutogeothermal system. Internal report, Geothermal Institute, Univ of Auckland. 3 p.

    Google Scholar 

  • Inoue A, Utada M, Nagata H, Watanabe T. 1984. Conversion of trioctahetral smectite to interstratified chlorite/smectite in Pliocene acid pyroclastic sediments of the Ohyn district, Akita Prefecture, Japan. Clay Sci 6:103–116.

    Google Scholar 

  • Jahren JS, Aagaard P. 1989. Compositional variations in diagenetic chiorites and illites, and relationships with formation-water chemistry. Clay Miner 24:157–170.

    Article  Google Scholar 

  • Jowett EC. 1991. Fitting iron and magnesium into the hydro-thermal chlorite geothermometer. GAC/MAC/SEG Joint Annu Meet Toronto; 27–29 May. Prog with Abstr 16:A62.

    Google Scholar 

  • Kepezhinskas KB. 1965. Composition of chiorites as determined from their physical properties. Dokl Akad Nauk SSSR, Earth Sci Sect 164:126–129.

    Google Scholar 

  • Kranidiotis P, MacLean WH. 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Ma-tagami, Quebec. Econ Geol 82:1898–1911.

    Article  Google Scholar 

  • Laird J. 1988. Chiorites: Metamorphic petrology. In: Bailey SW, editor. Hydrous phyllosilicates. Rev Mineral 19:405–454.

    Article  Google Scholar 

  • Lloyd EF. 1977. Geology factors influencing geothermal exploration in Langano region, Ethiopia. N.Z. Geol Surv UN Geothermal Project in Ethiopia. 73 p.

    Google Scholar 

  • MacDowell SD, Elders WA. 1980. Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74:293–310.

    Article  Google Scholar 

  • Mickledust RL, Fiori CE, Heinrich KFS. 1978. A compact procedure for quantitative energy dispersive electron probe X-ray analysis. US Natl Bur Stand Tech Note.

    Google Scholar 

  • Nemecz E. 1981. Clay minerals, Akademiai Kiado, Budapest, Hungary.

    Google Scholar 

  • Nieto F. 1997. Chemical composition of metapelitic chiorites: X-ray diffraction and optical property approach. Eur J Mineral 9:829–841.

    Article  Google Scholar 

  • Rausell-Colom JA, Wiewiora A, Matesanz E. 1991. Relation between composition and d001 for chlorite. Am Mineral 76: 1373–1379.

    Google Scholar 

  • Reynolds RC. 1988. Mixed-layer chlorite minerals. In: Bailey SW, editor. Hydrous phyllosilicates. Rev Mineral 19:601–629.

    Article  Google Scholar 

  • Roberson HE. 1989. Corrensite in hydrofhermally altered oceanic crustal rocks. Clay Miner Soc 26th Annu Meet (abstract). p 59.

    Google Scholar 

  • Rose AW, Burt DM. 1979. Geochemistry of hydrothermal ore deposits (hydrothermal alteration). New York: J Wiley.

    Google Scholar 

  • Shau YH, Peacor DR, Essene EJ. 1990. Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contrib Mineral Petrol 105:123–142.

    Article  Google Scholar 

  • Schiffman P, Fridleiifsson GO. 1991. The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations. J Metamorphic Geol 9:679–696.

    Article  Google Scholar 

  • Shirozu H. 1958. X-ray powder patterns and cell dimensions of some chiorites in Japan, with a note on their interference colors. Mineral J (Japan) 2:209–223.

    Article  Google Scholar 

  • Shirozu H. 1978. Developments in sedimentology (Chlorite minerals), vol. 26. New York: Elsevier. p 243–264.

    Article  Google Scholar 

  • Steiner A. 1977. The Wairakei geothermal area, North Island, New Zealand: Its subsurface geology and hydrothermal rock alteration. Bull New Zealand Geol Surv 90:136.

    Google Scholar 

  • Teklemariam M, Battaglia S, Gianelli G, Ruggieri G. 1993. Changes in temperature and salinity in a zone of lateral flow in the Aluto-Langano geothermal field, Ethiopia: Evidence from clay minerals and fluid inclusions. In: Fenoll Hach-Ali, Current research in geology applied to ore deposit. Torres-Ruiz Gervilla, editors. 775–778.

    Google Scholar 

  • Teklemariam M, Battaglia S, Gianelli G, Ruggieri G. 1996. Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia. Geothermics 25(6):679–702.

    Article  Google Scholar 

  • Von Engelhardt W. 1942. Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Stellung in der Chloritgruppe. Kristallogr 104:142–159.

    Google Scholar 

  • Westercamp D, Tomblin J. 1980. Le volcanisme rècent et les éruptions historiques dans la partie centrale de l’arc insulaire des Petites Antilles. Bull Bur Rech Geol Min, Ser. 2, 3/4:293–319.

    Google Scholar 

  • Wohletz K, Heiken G, Ander M, Goff F, Vautaz FD, Wadge G. 1986. The Qualibou caldera, St. Lucia, West Indies. J Volcanol Geotherm Res 27:77–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, S. Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays Clay Miner. 47, 54–63 (1999). https://doi.org/10.1346/CCMN.1999.0470106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1999.0470106

Key Words

Navigation