Skip to main content
Log in

Mineralogical Interference on Kaolinite Crystallinity Index Measurements

  • Published:
Clays and Clay Minerals

Abstract

This study examines the influence of minerals and amorphous phases associated with kaolin and kaolinitic rocks on kaolinite crystallinity indices (KCI) derived from X-ray diffraction (XRD) data in order to select the best index for systematic studies of commercial kaolins or geological sequences. For this purpose, 8 kaolins of differing structural order were chosen and used to prepare mixtures containing different weight fractions of quartz, feldspar, illite, smectite, chlorite, halloysite and iron hydroxide and silica gels. An additional 17 samples of kaolin were also studied to test the results and evaluate the restrictions. KCIs used included Hinckley (HI), Range and Weiss (QF), Liètard (R2), Stoch (IK), Hughes and Brown (H&B) and Amigó et al. (full width at half maximum, FWHM), and the “expert system” of Plançon and Zacharie.

Based on more than 15,000 KCI determinations, the HI and QF are influenced by quartz, feldspar, iron hydroxide gels, illite, smectite and halloysite. IK can be used in the presence of quartz, feldspar and iron hydroxide and silica gels. Also, R2 is the only KCI that could be measured in the presence of halloysite; FWHM indices should not be used in the presence of chlorite and/or halloysite; and H&B should only be used with pure kaolinite samples. The “expert system” of Plançon and Zacharie is strongly affected by the presence of other mineral phases, particularly with more than 25% of well-ordered kaolinite. Their system is less sensitive to other mineral phases when only disordered kaolinite is present, and it should not be used with kaolinite of medium order-disorder because the well-ordered phase is present in an inappreciable proportion (<10%). KCI is only measurable in kaolinitic rocks if kaolinite is >20 wt% and the precision increases with an increase in the quantity of kaolinite. In all cases, the reliability will depend on the other minerals present. When a KCI can be measured accurately, the others can be obtained by using the empirical relationships reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amigó JM, Bastida J, García Agramut MJ, Sanz M, Galván J. 1987. Crystallinity of Lower Cretaceous kaolinites of Teruel. In: Galán E, Pérez-Rodríguez JL, Cornejo J, editors. EUROCLAY Conf.; Sevilla’ 87; Sevilla, Spain. p 74–75.

    Google Scholar 

  • Artioli G, Belloto M, Gualtieri A, Pavese A. 1995. Nature of structural kaolinites: A new model based on computer simulation of powder diffraction data and electrostatic energy calculation. Clays Clay Miner 4:438–445.

    Article  Google Scholar 

  • Bristow CM. 1993. The genesis of China Clays of South-West England. A multistage story. In: Murray H, Bundy W, Harvey C. Kaolin, genesis and utilization. Boulder, CO: Clay Miner Soc. p 171–203.

    Google Scholar 

  • Bundy WM, Johns WD, Murray, HH. 1963. Physico chemical properties of kaolinite and relationship to paper coating quality. TAPPI 48. p 688–696.

    Google Scholar 

  • Cases, JM, Liètard O, Yvon J, Delon JF. 1982. Étude des propiértés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull Mineral 105:439–455.

    Google Scholar 

  • Chàvez CL, Johns W. 1995. Mineralogical and ceramic properties of refractory clays from central Missouri (USA). Appl Clay Sci 9:407–424.

    Article  Google Scholar 

  • Drits V, Tchoubar C. 1990. The modellization method in the determination of structural characteristic of some layer silicates: internal structure of the layer, nature and distribution of stacking faults. In: X-ray diffraction by disorded lamellar structures. Theory and applications to micro divided silicates and carbons. Berlin: Springer-Verlag. p 231–253.

    Google Scholar 

  • Ferraro J, Kubler B. 1964. Presence de dickite dans les gres Cambrienes d’Hassi Messaoud. Bull Serv Carte Geol Alsace-Lorraine 17:247–261.

    Article  Google Scholar 

  • Galán E. 1975. Caolines españoles. Geología, mineralogía y génesis [Tesis Doctoral Ed]. Soc Esp Ceram Vidr Madrid. 144 p.

    Google Scholar 

  • Galán E, Aparicio P, González I, La Iglesia A. 1994. Influence of associated components of kaolin on the degree of disorder of kaolinite as determined by XRD. Geologica Car-phatica. Series Clays 45:59–75.

    Google Scholar 

  • Galán E, Aparicio P, González I, Miras A. 1998. Contribution of multivariate analysis to the correlation of some properties of kaolin with its mineralogical and chemical composition. Clay Miner 33:65–75.

    Article  Google Scholar 

  • Galán E, Martin Vivaldi JL. 1973. Caolines españoles. Geo-logía, mineralogía y génesis (I). Bol Soc Esp Ceram Vidr 12:79–98.

    Google Scholar 

  • Galán E, Mattias PP, Galván J. 1977. Correlation about kaolin genesis and age of some Spanish kaolinites. In: Galán E, editor. Proc 8th Int Symp and Meet on Alunite; Madrid-Rome. Madrid: Ministerio de Industria y Energía. K-8, 8 p.

    Google Scholar 

  • Gomes C, Velho JA, Delgado H. 1990. Kaolin deposits of Portugal Geociências Rev Univ Aveiro 5:75–89.

    Google Scholar 

  • Gomes C, Velho J, Guimaraes F. 1994. Kaolin deposit of Mevaiela (Angola) alteration product of anorthosite: Assessment of kaolin potentialities for applications in paper. Appl Clay Sci 9:97–106.

    Article  Google Scholar 

  • González I, Aparicio P, Galán E. 1997. Correlation between the most frequently used XRD crystallinity indices for kaolinite. Their accuracy and reproducibility. Abstr 11th Int Clay Conf.; Ottawa, Canada. A32.

    Google Scholar 

  • Hinckley D. 1963. Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Clays Clay Miner 11:229–235.

    Article  Google Scholar 

  • Hughes JC, Brown G. 1979. A crystallinity index for soil kaolins and its relation to parent rock, climate and soil nature. J Soil Sci 30:557–563.

    Article  Google Scholar 

  • Kerr PF. 1949. Reference clay minerals: Preliminary report. American Petroleum Institute. Project 49, Columbia Univ, New York.

    Google Scholar 

  • Köster HM, Brandi M. 1991. Mineralogy and geochemistry of primary kaolins and related kaolinitic clays in NE-Ba-varia. In: Stor E, Henning KH, Adolphi P, editors. Proc 7th Euroclay Conference; Dresden. p. 641–647.

    Google Scholar 

  • Kotz S, Johnson NI. 1983. Encyclopedia of statistical sciences, vol. 4. New York: J Wiley. 672 p.

    Google Scholar 

  • La Iglesia A, Aznar AJ. 1996. Crystallinity variations in kaolinite induced by grinding and pressure treatments. J Mater Sci 31(17):4671–4677.

    Article  Google Scholar 

  • Liètard O. 1977. Contribution à l’étude des propiétés phisi-cochimiques, cristallographiques et morphologiques des kaolins [Ph. D. thesis]. Nancy, France. 345 p.

    Google Scholar 

  • Mattias P, Crocetti G, Barrese E, Falco F. 1994. Halloysite and other hydrothermal related minerals of Capalbio Gros-seto (Tuscani-Central Italy). Abstr 16th General Meet IMA; Pisa, Italy; 1994. p 269–270.

    Google Scholar 

  • Martin Vivaldi JL, Linares González J. 1969. Las bentonitas de Cabo de Gata III. Consideraciones sobre la mineralogi’a y génesis de los yacimientos estudiados. Bol Geol y Min LXXX-I:74–80.

    Google Scholar 

  • Martin Vivaldi JL, Pozzuoli A, Mattias P, Galan Huertos E. 1972. The swelling of layer minerals: I-Interaction with DMSO and NMFA. In: Serratosa JM, editor. Preprints Int Clay Conf: 1972; Madrid. p 455–468.

    Google Scholar 

  • Martín Pozas JM. 1975. Análisis cuantitativo de fases cris-talinas por DRX. In: Saja J, editor. Método de Debey-Scherrer. ICE. Universidad de Valladolid.

    Google Scholar 

  • Maxwell DT, Hower J. 1967. High-grade diagenesis and low-grade metamorphism in the Precambrian Belt series. Am Mineral 52:843–857.

    Google Scholar 

  • Mesa JM. 1986. Contribución al estudio mineralógico de las pizarras alumínicas (Tierras Biancas) del Paleozoico de la provincia de Badajoz. [Ph. D. thesis]. Univ de Sevilla. 318 p.

    Google Scholar 

  • Montgomary DC. 1976. Design and analysis of experiments. New York: J. Wiley.

    Google Scholar 

  • Muller RG. 1981. Simultaneous statistical inference. Berlin: Springer Verlag. p 165–172.

    Book  Google Scholar 

  • Murray HH, Lyons SC. 1956. Correlation of paper-coating quality with degree of crystal perfection of kaolinite. In: Swineford A, editor. Clays Clay Miner, Proc 4th Natl Conf.; 1955.

    Google Scholar 

  • Nieto F, Rodríguez Gallego M. 1981. Alteración experimental de cloritas. Revista de la Academia de Ciencias de Granada 1:108–124.

    Google Scholar 

  • Patterson SH, Murray HH. 1975. Clays. In: Lefond SJ, editor. Industrial minerals and rocks, 4th ed. New York: AIME. p 519–585.

    Google Scholar 

  • Plançon A, Zacharie C. 1990. An expert system for the structural characterization of kaolinites. Clay Miner 25:249–260.

    Article  Google Scholar 

  • Range KJ, Weiss A. 1969. Uber das Verhalten von kaolinitit bei hohen Drücken. Ber Deut Keram Ges 46:231—288.

  • Rodríguez Jimenez P, Ruiz Cruz MD. 1988. Mineralogía y génesis de las arcillas de las unidades del campo de Gibraltar. I. Areniscas del Aljibe. Estudios Geológicos 44:31–46.

    Google Scholar 

  • Ruiz Cruz MD. 1994. Diagenetic development of clay and related minerals in deep water sandstones (S. Spain): Evidence of lithological control. Clay Miner 29:93–104.

    Article  Google Scholar 

  • Schroeder RJ, Hayes JB. 1968. Dickite and kaolinite in Penn-sylvanian limestone of southeastern Kansas. Clays Clay Miner 16:41–49.

    Article  Google Scholar 

  • Schultz LG. 1964. Quantitative interpretation of mineralogi-cal composition from X-ray and chemical data for the Pierre Shale. US Geol Survey Prof Paper 391-C

    Google Scholar 

  • Stoch L. 1974. Mineraly Ilaste (“Clay Minerals”). Warsaw: Geological Publishers. p 186–193.

    Google Scholar 

  • Van Olphen H, Fripiat JJ. 1979. Data handbook for clay materials and other non-metallic minerals. Oxford: Pergamon Pr.

    Google Scholar 

  • Velho JA, Gomes C. 1991. Characterization of Portuguese kaolins for the paper industry: Beneficiation through new delamination techniques. Appl Clay Sci 6:155–170.

    Article  Google Scholar 

  • Yvon J, Cases JM, Liètard O, Garin P, Lhote F. 1980. Influence des propriétés des charges kaolinitiques sur les performances des caoutchoucs naturels charges. Clay Miner 15:351–368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, P., Galán, E. Mineralogical Interference on Kaolinite Crystallinity Index Measurements. Clays Clay Miner. 47, 12–27 (1999). https://doi.org/10.1346/CCMN.1999.0470102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1999.0470102

Key Words

Navigation