Skip to main content
Log in

Surface Microtopography of Lath-Shaped Hydrothermal Illite by Tapping-Mode™ and Contact-Mode AFM

  • Published:
Clays and Clay Minerals

Abstract

Lath-shaped hydrothermal illite particles in Izumiyama pottery stone were examined by contact-mode atomic force microscopy (CMAFM) and tapping-mode AFM (TMAFM) in air. With CMAFM, the lath-shaped particles showed interlacing patterns on the (001) surface in deflection images, while in height images such patterns were unclear. Also, evidence of artifacts caused by frictional forces between the surface and tip and/or edge effects were found in the CMAFM height images of the particle and Si substrate surfaces. In contrast, TMAFM showed interlacing patterns clearly in both amplitude and height images, and artifacts were barely evident. The TMAFM height images permitted the accurate measurement of 1.0- or 2.0-nm height steps corresponding to single or double mica layers, as well.

Many lath-shaped particles in the Izumiyama hydrothermal illite exhibit interlacing patterns on their (001) surface, as shown by these AFM observations. The interlacing patterns are characterized by polygonal spirals with comparatively wide spacings and steps having a height of 1.0 or 2.0 nm. Generally a single lath-shaped particle has a single spiral center on the (001) surface, and 2 mica layers rotated 120° originate from the dislocation point. These support the view that lath-shaped illites belong to the 2M1 polytype. It is likely that these illite particles were formed by a uniform process of development that is characterized by very slow growth, spiral mechanisms in that growth and low supersaturation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baronnet A. 1992. Polytypism and stacking disorder. In: Buseck PR, editor. Minerals and reactions at the atomic scale: Transmission electron microscopy. Rev Mineral 27. Washington, DC: Mineral Soc Am. p 231–288.

    Chapter  Google Scholar 

  • Bickmore BR, Hochella MF Jr. 1997. The particle specific nature of mica weathering: Real-time observation of K+ exchange in clay-sized mica particles using fluid cell TMAFM™. In: 7th Ann VM Goldschmidt Conf; LPI Contribution No. 921, Lunar and Planetary Institute, Houston, p 27–28.

    Google Scholar 

  • Binnig G, Quate CF, Gerber Ch. 1986. Atomic force microscope. Phys Rev Lett 56:930–933.

    Article  Google Scholar 

  • Blum AE. 1994. Determination of illite/smectite particle morphology using scanning force microscopy. In: Nagy KL, Blum AE, editors. Scanning probe microscopy of clay minerals. CMS workshop lectures, vol 7. Boulder, CO: Clay Miner Soc. p 172–202.

    Google Scholar 

  • Butt H-J, Wolff EK, Gould SAC, Dixon Northern B, Peterson CM, Hansma PK. 1990. Imaging cells with the atomic force microscope. J Struct Biol 105:54–61.

    Article  Google Scholar 

  • Digital Instruments. 1993. Nanoscope III Comand reference manual Vers. 3.0. Santa Barbara, CA 93103: Digital Instruments Inc. 227 p.

    Google Scholar 

  • Dove PM, Hochella MF Jr. 1993. Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by scanning force microscopy. Geochim Cosmochim Acta 57:705–714.

    Article  Google Scholar 

  • Dove PM, Chermak JA. 1994. Mineral-water interactions: Fluid cell applications of scanning force microscopy. In: Nagy KL, Blum AE, editors. Scanning probe microscopy of clay minerals. CMS workshop lectures, vol 7. Boulder, CO: Clay Miner Soc. p 140–169.

    Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK. 1989. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589.

    Article  Google Scholar 

  • Durbin SD, Carlson WE. 1992. Lysozyme crystal growth studied by atomic force microscopy. J Crystal Growth 122:71–79.

    Article  Google Scholar 

  • Eggleston CM. 1994. High-resolution scanning probe microscopy: Tip-surface interaction, artifacts, and applications in mineralogy and geochemistry. In: Nagy KL, Blum AE, editors. Scanning probe microscopy of clay minerals. CMS workshop lectures vol. 7. Boulder, CO: Clay Miner Soc. p 3–90.

    Google Scholar 

  • Grantham MC, Dove PM. 1996. Investigation of bacterial-mineral interactions using fluid tapping mode™ atomic force microscopy. Geochim Cosmochim Acta 57:2473–2480.

    Article  Google Scholar 

  • Gratz AJ, Manne S, Hansma PK. 1991. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz. Science 251:1343–1346.

    Article  Google Scholar 

  • Gratz AJ, Hillner PE, Hansma PK. 1992. Step dynamics and spiral growth on calcite. Geochim Cosmochim Acta 57:491–495.

    Article  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. 1994. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603.

    Article  Google Scholar 

  • Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK. 1992. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256:1180–1184.

    Article  Google Scholar 

  • Hansma HG, Laney DE, Bezanilla M, Sinsheimer RL, Hansma PK. 1995. Applications for atomic force microscopy of DNA. Biophys J 68:1672–1677.

    Article  Google Scholar 

  • Hartmann H, Sposito G, Yang A, Manne S, Gould SAC, Hansma PK. 1990. Molecular-scale imaging of clay mineral surfaces with the atomic force microscope. Clays Clay Miner 38:337–342.

    Article  Google Scholar 

  • Hillner PE, Gratz AJ, Manne S, Hansma PK. 1992. Atomic-scale imaging of calcite growth and dissolution in real time. Geology 20:359–362.

    Article  Google Scholar 

  • Hirasawa K, Uehara S. 1998. Microtexture and microstructure of illite from the Izumiyama pottery stone, Arita, Saga Prefecture. In: A study of mineral boundary and surface by HRTEM and AFM. Progress Report of a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture. Project No. 07640645. p 14–33 (in Japanese).

    Google Scholar 

  • Huber CA, Huber TE, Sadoqi M, Lubin JA, Manalis S, Prater CB. 1994. Nanowire array composites. Science 263:800–802.

    Article  Google Scholar 

  • Inoue A, Kohyama N, Kitagawa R, Watanabe T. 1987. Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner 35:111–120.

    Article  Google Scholar 

  • Inoue A, Velde B, Meunier A, Touchard G. 1988. Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Mineral 73:1325–1334.

    Google Scholar 

  • Johnsson PA, Eggleston CM, Hochella MF Jr. 1991. Imaging molecular-scale structure and microtopography of hematite with the atomic force microscope. Am Mineral 76:1442–1445.

    Google Scholar 

  • Kitagawa R, Takeno S, Sunagawa I. 1983. Surface microtopographies of sericite crystals formed in different environmental conditions. Mineral J 11:282–296.

    Article  Google Scholar 

  • Kumai K, Tsuchiya K, Nakato T, Sugahara Y, Kuroda K. 1995. AFM observation of kaolinite surface using “pressed” powder. Clay Sci 9:311–316.

    Google Scholar 

  • Lindgreen H, Garnæs J, Hansen PL, Besenbacher F, Lægsgaard E, Stensgaard I, Gould SAC, Hansma PK. 1991. Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM. Am Mineral 76:1218–1222.

    Google Scholar 

  • Maurice PA, Hochella MF Jr, Parks GA, Sposito G, Schwertmann U. 1994. Evolution of hematite surface microtopography upon dissolution by simple organic acids. Clays Clay Miner 43:39–50.

    Google Scholar 

  • Mazzola LT, Fodor SPA. 1995. Imaging biomolecule arrays by atomic force microscopy. Biophys J 68:1653–1660.

    Article  Google Scholar 

  • Nagy KL. 1994. Application of morphological data obtained using scanning force microscopy to quantification of fibrous illite growth rates. In: Nagy KL, Blum AE, editors. Scanning probe microscopy of clay minerals. CMS workshop lectures, vol 7. Boulder, CO: Clay Miner Soc. p 204–239.

    Google Scholar 

  • Ohnesorge F, Binnig G. 1993. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456.

    Article  Google Scholar 

  • Putman CAJ, van der Werf KO, de Grooth BG, van Hulst NF, Greve J. 1994. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J 67:1749–1753.

    Article  Google Scholar 

  • Rachlin AL, Henderson GS, Goh MC. 1992. An atomic force microscope (AFM) study of the calcite cleavage plane: Image averaging in Fourier space. Am Mineral 77:904–910.

    Google Scholar 

  • Radmacher M, Fritz M, Hansma HG, Hansma PK. 1994. Direct observation of enzyme activity with the atomic force microscope. Science 265:1577–1579.

    Article  Google Scholar 

  • Stipp SLS, Eggleston CM, Nielsen BS. 1994. Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochim Cosmoehim Acta 58:3023–3033.

    Article  Google Scholar 

  • Sunagawa I, Koshino Y. 1975. Growth spirals on kaolin group minerals. Am Mineral 60:407–412.

    Google Scholar 

  • Tomura S, Kitamura M, Sunagawa I. 1976. Surface microtopography of metamorphic white micas. Phys Chem Miner 5:65–81.

    Article  Google Scholar 

  • Umemura K, Arakawa H, Ikai A. 1993. High resolution images of cell surface using a tapping mode atomic force microscope. Japan J Appl Phys 32:L1711–L1714.

    Article  Google Scholar 

  • Vrdoljak GA, Henderson GS, Fawcett JJ. 1994. Structural relaxation of the chlorite surface imaged by the atomic force microscope. Am Mineral 79:107–112.

    Google Scholar 

  • Weidler PG, Schwinn T, Gaub HE. 1996. Vicinal faces on synthetic goethite observed by atomic force microscopy. Clays Clay Miner 44:437–442.

    Article  Google Scholar 

  • Weisenhorn AL, Mac Dougall JE, Gould SAC, Cox SD, Wise WS, Massie J, Maivald P, Elings B, Stucky GD, Hansma PK. 1990. Imaging and manipulating molecules on a zeolite surface with an atomic force microscope. Science 247:1330–1333.

    Article  Google Scholar 

  • Wicks FJ, Kjoller K, Henderson GS. 1992. Imaging the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope. Can Mineral 30:83–91.

    Google Scholar 

  • Wicks FJ, Kjoller K, Eby RK, Hawthorne FC, Henderson GS, Vrdoljak GA. 1993. Imaging the internal atomic structure of layer silicates using the atomic force microscope. Can Mineral 31:541–550.

    Google Scholar 

  • Wicks FJ, Henderson GS, Vrdoljak GA. 1994. Atomic and molecular scale imaging of layered and other mineral structures. In: Nagy KL, Blum AE, editors. Scanning probe microscopy of clay minerals. CMS workshop lectures, vol 7. Boulder, CO: Clay Miner Soc. p 92–138.

    Google Scholar 

  • Zhong Q, Inniss D, Kjoller K, Elings VB. 1993. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Sci Lett 290:L688–L692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwahara, Y., Uehara, S. & Aoki, Y. Surface Microtopography of Lath-Shaped Hydrothermal Illite by Tapping-Mode™ and Contact-Mode AFM. Clays Clay Miner. 46, 574–582 (1998). https://doi.org/10.1346/CCMN.1998.0460511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1998.0460511

Key Words

Navigation