Skip to main content

AFM-Based Characterization of Electrical Properties of Materials

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

  • 2245 Accesses

Abstract

Capabilities of atomic force microscopy (AFM) for characterization of local electrical properties of materials are presented in this chapter. At the beginning the probe–sample force interactions, which are employed for detection of surface topography and materials properties, are described theoretically in their application in different AFM modes and electrical techniques. The electrical techniques, which are based on detection of electrostatic probe–sample forces, are outlined in AFM contact and oscillatory resonant modes. The basic features of the detection of surface potential and capacitance gradients are explained. The applications of these techniques are illustrated on metals, surfactant compounds, semiconductors, and different polymers. Practical recommendations on use of the AFM-based electrical methods and the related challenges are given in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  2. Krotil H-J, Stifter T, Waschipky H et al (1999) Pulsed force mode: a new method for the investigation of surface properties. Surf Interface Anal 27:336–340

    Article  CAS  Google Scholar 

  3. Belikov S, Alexander J, Wall C (2013) Tip-sample forces in atomic force microscopy: Interplay between theory and experiment. MRS Proc 1527. mrsf12-1527-uu02–04

    Google Scholar 

  4. Timoshenko S, Young DH, Weaver W Jr (1974) Vibration problems in engineering. Willey, New York

    Google Scholar 

  5. Belikov S, Magonov S (2009) Classification of dynamic atomic force microscopy control modes based on asymptotic nonlinear mechanics Proceedings American Control Conference, p 979–985

    Google Scholar 

  6. Belikov S, Yermolenko I, Magonov S (2015) Modeling and measurements in atomic force microscopy resonance modes. Proceedings American Control Conference, p 3484–3489

    Google Scholar 

  7. Belikov S, Alexander J, Surtchev M et al (2016) Implementation of atomic force microscopy resonance modes based on asymptotic dynamics using Costas loop. Proceedings American Control Conference, p 6201–6208

    Google Scholar 

  8. Zhong Q, Innis D, Kjoller K et al (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    CAS  Google Scholar 

  9. Magonov S (2000) AFM in analysis of polymers. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 7432–7491

    Google Scholar 

  10. Hölscher H, Schmutz JE, Schwarz UD (2011) Dynamic force microscopy and spectroscopy in ambient conditions: theory and applications. In: Kalinin SV, Gruverman A (eds) Scanning probe microscopy of functional materials: nanoscale imaging and spectroscopy. Springer, New York, pp 71–94

    Google Scholar 

  11. Bai M, Trogisch S, Magonov S et al (2008) Explanation and correction of false step heights in amplitude modulation atomic force microscopy measurements on alkane films. Ultramicroscopy 108:946–952

    Article  CAS  PubMed  Google Scholar 

  12. Albrecht TP, Gruetter P, Horne D et al (1991) Frequency modulation detection using high Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 61:668–673

    Article  Google Scholar 

  13. Fukuma T, Ichii T, Kobayashi K et al (1995) True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments. Appl Phys Lett 86:034103–034105

    Article  CAS  Google Scholar 

  14. Magonov S, Alexander J, Surtchev M (2017) Compositional mapping of bitumen using local electrostatic force interactions in atomic force microscopy. J Microsc 265:196–206

    Article  CAS  PubMed  Google Scholar 

  15. Sader JE, Jarvis SP (2004) Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus. Phys Rev B 70:012303–012305

    Article  CAS  Google Scholar 

  16. Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84:1801–1803

    Article  CAS  Google Scholar 

  17. Reid OG, Munechika K, Ginger DS (2008) Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy. Nano Lett 8:1602–1609

    Article  CAS  PubMed  Google Scholar 

  18. Kopanski JJ (2007) Scanning capacitance microscopy for electrical characterization of semiconductors and dielectrics. In: Kalinin S, Gruverman A (eds) Scanning probe microscopy. Springer, New York, NY, pp 88–112

    Chapter  Google Scholar 

  19. Lai K, Ji MB, Leindecker N, Kelly MA et al (2007) Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes. Rev Sci Instrum 78:063702. https://doi.org/10.1063/1.2746768

    Article  PubMed  CAS  Google Scholar 

  20. Cho S, Kang SD, Kim W et al (2013) Thermoelectric imaging of structural disorder in epitaxial graphene. Nat Mater 12:913–918

    Article  CAS  PubMed  Google Scholar 

  21. Martin Y, Abraham DA, Wickramasinghe HK et al (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett 52:1103–10005

    Article  Google Scholar 

  22. Kholkin AL, Kalinin SV, Roelofs A et al (2007) Review of ferroelectric domain imaging by piezoresponse force microscopy. In: Kalinin S, Gruverman A (eds) Scanning probe microscopy, vol 1. Springer, New York, pp 173–214

    Chapter  Google Scholar 

  23. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921–2923

    Article  Google Scholar 

  24. Inoue T, Yokoyama H (1994) Imaging of surface electrostatic features in phase-separated phospholipid monolayers by scanning Maxwell stress microscopy. J Vac Sci Technol B 12:1569–1571

    Article  Google Scholar 

  25. Gomila G, Toset J, Fumagalli L (2008) Nanoscale capacitance microscopy of thin dielectric films. J Appl Phys 104(024315):1–8

    Google Scholar 

  26. Belikov S, Alexander J, Magonov S et al (2012) Atomic force microscopy control system for electrostatic measurements based on mechanical and electrical modulation. Proceedings American Control Conference, p 3228–3233

    Google Scholar 

  27. Humphries S Jr (1998) Field solutions on computers. CRC Press, Boca Raton, FL

    Google Scholar 

  28. Watanabe S, Hane K, Ohye T et al (1993) Electrostatic force microscope imaging analyzed by the surface charge method. J Vac Sci Technol B11:1774–1781

    Article  Google Scholar 

  29. Colchero J, Gil A, Baro AM (2001) Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys Rev B 64(245403):1–11

    Google Scholar 

  30. Elings V B, Gurley J A (1994) Scanning probe microscope using stored data for vertical probe positioning. US Patent 5,308,974, 5 Mar 1994

    Google Scholar 

  31. Hong JW, Noh KH, Park S et al (1998) Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy. Phys Rev B 58:5078–5084

    Article  CAS  Google Scholar 

  32. Abed AE, Faure M-C, Pouzet E et al (2002) Experimental evidence for an original two-dimensional phase structure: an antiparallel semifluorinated monolayer at the air-water interface. Phys Rev E 5:051603–051604

    Article  CAS  Google Scholar 

  33. Magonov S, Alexander J, Wu S (2011) Advancing characterization of materials with atomic force microscopy - based electrical techniques (Chapter 9). In: Kalinin SV, Gruverman A (eds) Scanning probe microscopy of functional materials: nanoscale imaging and spectroscopy. Springer, New York, pp 233–300

    Google Scholar 

  34. Zerweck U, Loppacher C, Otto T et al (2005) Accuracy and resolution limits of kelvin probe force microscopy. Phys Rev B 71:125424

    Article  CAS  Google Scholar 

  35. Riedel C, Sweeney R, Israeloff NE et al (2010) Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy. Appl Phys Lett 96(213110):1–3

    Google Scholar 

  36. Magonov S, Alexander J (2012) Single-pass kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials. Beilstein J Nanotechnol 2:15–27

    Article  CAS  Google Scholar 

  37. Magonov S, Alexander J, Belikov S (2012) Exploring surfaces of materials with atomic force microscopy(Chapter 7). In: Korkin A, Lockwood DJ (eds) Nanoscale applications for information and energy systems, Nanostructure Science and Technology. Springer, New York, pp 203–253

    Google Scholar 

  38. Fumagalli L, Esteban-Ferrer D, Cuervo A et al (2012) Label-free identification of single dielectric nanoparticles and viruses with ultra-weak polarization forces. Nat Mater 11:808–816

    Article  CAS  PubMed  Google Scholar 

  39. Gramse G, Dols-Peres A, Edwards MA et al (2013) Nanoscale measurements of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys J 104:1257–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Magonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alexander, J., Belikov, S., Magonov, S. (2018). AFM-Based Characterization of Electrical Properties of Materials. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics