Skip to main content
Log in

The Chemical Composition of Serpentine/Chlorite in the Tuscaloosa Formation, United States Gulf Coast: EDX vs. XRD Determinations, Implications for Mineralogic Reactions and the Origin of Anatase

  • Published:
Clays and Clay Minerals

Abstract

The chemical composition of mixed-layer serpentine/chlorite (Sp/Ch) in Tuscaloosa Formation sandstone was analyzed by energy dispersive X-ray spectroscopy (EDX) in the scanning electron miscroscope (SEM) and by X-ray diffraction (XRD). EDX results indicate little depth-controlled variation in composition, whereas XRD results suggest distinct decreases in octahedral Fe and tetrahedral Al. XRD-determined compositions appear to be erroneous and actually reflect progressive changes in Sp/Ch unit-cell dimensions caused by polytype transformations of Ibb layers to Iaa layers in a mixed-layer Ibb/Iaa polytype. The relative lack of variation in Sp/Ch composition, especially when compared to other studies of chlorite minerals over similar temperature ranges, is attributed to a reaction mechanism whereby mineralogic transformations (serpentine layers to chlorite layers and Ibb layers to Iaa layers) occur on a layer-by-layer basis within coherent crystallites, rather than by dissolution-precipitation crystal growth.

The lack of titanium in chlorite minerals is attributed to high levels of octahedral Al3+ that prohibit inclusion of the highly charged Ti4+ in the octahedral sheet. Anatase (TiO2) in the Tuscaloosa Formation apparently formed when Ti was liberated during crystallization of Sp/Ch following the breakdown of a Ti-bearing precursor (detrital ultramafic clasts and/or odinite). Odinite, an Fe-rich 7-Å phyllosilicate that forms in some shallow marine sands, apparently existed as a short-lived, poorly crystallized intermediary between dissolution of the ultramafic clasts and formation of Sp/Ch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrecht J, Hewitt DA. 1988. Experimental evidence on the substitution of Ti in biotite. Am Mineral 73:73–1284.

    Google Scholar 

  • Ahn JH, Peacor DR. 1985. Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clays Clay Miner 33:33–237.

    Article  Google Scholar 

  • Al-Dahan AA, Morad S. 1986. Chemistry of detrital biotites and their phyllosilicate intergrowths in sandstones. Clays Clay Miner 34:34–548.

    Google Scholar 

  • Alford EV. 1983. Compositional variations of authigenic chlorites in the Tuscaloosa Formation, Upper Cretaceous of the Gulf Coast Basin [M.S. thesis]. New Orleans, LA: Univ. of New Orleans.

    Google Scholar 

  • Annerston H. 1968. A mineral chemical study of a metamorphosed iron formation in northern Sweden. Lithos 1:1–397.

    Article  Google Scholar 

  • Bachinski SW, Simpson EL. 1984. Ti-phlogopites of the Shaw’s Cove Minette: A comparison with micas of other lamprophyres, potassic rocks, kimberlites and mantle xenoliths. Am Mineral 69:41–56.

    Google Scholar 

  • Bailey SW. 1972. Determination of chlorite compositions by X-ray spacings and intensities. Clays Clay Miner 20:20–388.

    Article  Google Scholar 

  • Bailey SW., 1988a. Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral. Clay Miner 23:23–247.

    Article  Google Scholar 

  • Bailey SW., 1988b. Chlorites: Structures and crystal chemistry. In: Bailey SW, editor. Hydrous phyllosilicates (exclusive of micas), Rev Mineral 19. Washington, DC: Mineral Soc Am. p 347–403.

    Chapter  Google Scholar 

  • Bailey SW, Banfield JF, Barker WW. 1995. Dozyite, a 1:1 regular interstratifiaction of serpentine and chlorite. Am Mineral 80:65–77.

    Article  Google Scholar 

  • Brigatti MF, Poppi L, Fabbri A. 1991. Corrensites: genetic relationships assessed by multivariate statistical analysis. Bull Mineral 109:109–553.

    Google Scholar 

  • Brindley GW. 1961. Chlorite minerals. In: Brown G, editor. The X-ray identification and crystal structures of clay minerals. London: Mineral Soc. p 242–296.

    Google Scholar 

  • Brindley GW. 1982. Chemical composition of berthierines—A review. Clays Clay Miner 30:30–155.

    Google Scholar 

  • Brown G, Bailey SW. 1962. Chlorite polytypism: I. Regular and semi-random one-layer structures. Am Mineral 47:47–850.

    Google Scholar 

  • Cathelineau M. 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:23–485.

    Article  Google Scholar 

  • Cathelineau M, Nieva D. 1985. A chlorite solid solution geothermometer: The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:91–244.

    Article  Google Scholar 

  • Chagnon A, Desjardins M. 1991. Determination de la composition de la chlorite par diffraction et microanalyse aux rayons X. Can Mineral 29:245–254.

    Google Scholar 

  • Curtis CD, Ireland BJ, Whiteman JA, Mulvaney R, Whittle CK. 1984. Authigenic chlorites: Problems with chemical analysis and structural formula calculation. Clay Miner 19:19–481.

    Google Scholar 

  • de Caritat P, Hutcheon I, Walshe JL. 1993. Chlorite geothermometry: A review. Clays Clay Miner 41:41–239.

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J. 1992. An introduction to the rock-forming minerals, 2nd ed. New York: J Wiley. 696 p.

    Google Scholar 

  • Eberl DD, Srodon J, Kralik M, Taylor BE, Peterman ZE. 1990. Ostwald ripening of clays and metamorphic minerals. Science 248:248–477.

    Article  Google Scholar 

  • Eggleton RA, Banfield JF. 1985. The alteration of granitic biotite to chlorite. Am Mineral 70:70–910.

    Google Scholar 

  • Ehrenberg SN. 1993. Preservation of anomolously high porosity in deeply buried sandstones by grain-coating chlorite examples from the Norwegian Continental Shelf. Am Assoc Petrol Geol Bull 77:77–1286.

    Google Scholar 

  • von Engelhardt W. 1942. Die Structuren von Thuringit, Bavalit, und Chamosit und ihre Stellung in der Chloritgruppe. Z Kristallogr 104:142–159.

    Google Scholar 

  • Forbes WC, Flower MFJ. 1974. Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: A refractory phase in the upper mantle? Earth Planet Sci Lett 22:60–66.

    Article  Google Scholar 

  • Foster MD. 1962. Interpretation of the composition and a classification of the chlorites. US Geol Survey Prof Paper 414-A:1–33.

    Google Scholar 

  • Guidotti CV. 1984. Micas in metamorphic rocks. In: Bailey SW, editor. Micas, Rev Mineral 13. Washington, DC: Mineral Soc Am., p 357–467.

    Google Scholar 

  • Guidotti CV, Cheney JT, Guggenheim S. 1977. Distribution of titanium between coexisting muscovite and biotite in pelitic schists from Northwestern Maine. Am Mineral 62:62–448.

    Google Scholar 

  • Hamlin KH, Cameron CP. 1987. Sandstone petrology and diagenesis of Lower Tuscaloosa Formation reservoirs in the McComb and Little Creek field areas, southwest Mississippi. Trans Gulf Coast Assoc Geol Soc 37:95–104.

    Google Scholar 

  • Heald MT, Anderegg RC. 1960. Differential cementation in the Tuscarora sandstone. J Sed Petrol 30:30–577.

    Article  Google Scholar 

  • Hearne JH, Lock BE., 1985. Diagenesis of the Lower Tuscaloosa as seen in the DuPont de Nemours #1 Lester Earnest, Harrison County, Mississippi. Trans Gulf Coast Assoc Geol Soc 35:35–393.

    Google Scholar 

  • Hillier S. 1994. Pore-lining chlorites in siliciclastic reservoir sandstones: Electron microscope, SEM, and XRD data, and implications for their origin. Clay Miner 29:665–679.

    Article  Google Scholar 

  • Hillier S, Velde B. 1991. Octahedral occupancy and chemical composition of diagenetic (low-temperature) chlorites. Clay Miner 26:26–168.

    Article  Google Scholar 

  • Hogg MD. 1988. Newtonia Field: A model for mid-dip Lower Tuscaloosa retrograde deltaic sedimentation. Trans Gulf Coast Assoc Geol Soc 38:38–471.

    Google Scholar 

  • Hornibrook ERC, Longstaffe FJ. 1996. Berthierine from the Lower Cretaceous Clearwater Formation, Alberta, Canada. Clays Clay Miner 44:1–21.

    Article  Google Scholar 

  • Hunter BE, Davies DK. 1979. Distribution of volcanic sediments in the Gulf Coast Province—Significance to petroleum geology. Trans Gulf Coast Assoc Geol Soc 29:29–155.

    Google Scholar 

  • Iijima A, Matsumoto R. 1982. Berthierine and chamosite in coal measures of Japan. Clays Clay Miner 30:30–274.

    Article  Google Scholar 

  • Jahren JS. 1991. Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway. Clay Miner 26:26–178.

    Article  Google Scholar 

  • Jahren JS, Aagaard P. 1989. Compositional variations in diagenetic chlorites and illites, and their relationships with formation water chemistry. Clay Miner 24:157–170.

    Article  Google Scholar 

  • Jahren JS, Aagaard P. 1992. Diagenetic illite-chlorite assemblages in arenites: I. Chemical evolution. Clays Clay Miner 40:40–546.

    Article  Google Scholar 

  • James HL. 1966. Chemistry of the iron-rich sedimentary rocks. US Geol Survey Prof Paper 440-W. 60 p.

    Google Scholar 

  • Jiang W-T, Peacor DR, Buseck PR. 1994. Chlorite geothermometry?—Contamination and apparent octahedral vacancies. Clays Clay Miner 42:42–605.

    Google Scholar 

  • Jiang W-T, Peacor DR, Slack JF. 1992. Microstructures, mixed-layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulfide deposit, Ontario. Clays Clay Miner 40:501–514.

    Article  Google Scholar 

  • Kepezhinskas KB. 1965. Composition of chlorites as determined from their physical properties. Dokl Akad Nauk S.S.S.R, Earth Sci Sect 164:126–129 (English).

    Google Scholar 

  • Labotka TC. 1983. Analysis of the compositional variation of biotite in pelitic hornfelses from Northeastern Minnesota. Am Mineral 68:68–914.

    Google Scholar 

  • Laird J. 1988. Chlorites: Metamorphic petrology. In: Bailey SW, editor. Hydrous phyllosilicates (exclusive of micas), Rev Mineral 19. Washington, DC: Mineral Soc Am. p 405–447.

    Chapter  Google Scholar 

  • Li G, Peacor DR. 1993. Sulfides precipitated in chlorite altered from detrital biotite: A mechanism for local sulfate reduction? Abstr Progr Geol Soc Am Annu Meet 25:146–147.

    Google Scholar 

  • McDowell SM, Elders WA. 1980. Authigenic layer silicate minerals in borehole Elmore #1, Salton Sea Geothermal Field California. Contrib Mineral Petrol 74:293–310.

    Article  Google Scholar 

  • Monier G, Robert JL. 1986. Titanium in muscovites from two mica granites: Substitutional mechanism and partition with coexisting biotites. Neues Jarbuch fuer Mineralogie, Abhandlungen 153:147–161.

    Google Scholar 

  • Morad S. 1986. SEM Study of authigenic rutile, anatase, and brookite in Proterozoic sandstones from Sweden. Sed Geol 46:77–89.

    Article  Google Scholar 

  • Nelson BW, Roy R. 1958. Synthesis of the chlorites and their structural and chemical constitution. Am Mineral 43:43–725.

    Google Scholar 

  • Newman ACD. 1987. Chemistry of clays and clay minerals. New York: J Wiley. 480 p.

    Google Scholar 

  • Odin GS. 1990. Clay mineral formation at the continent-ocean boundary: The verdine facies. Clay Miner 25:25–483.

    Article  Google Scholar 

  • Otten MT, Buseck PR. 1987. TEM study of the transformation of augite to sodic pyroxene in eclogitized ferrogabbro. Contrib Mineral Petrol 96:96–538.

    Article  Google Scholar 

  • Patino Douce AE. 1993. Titanium substitution in biotite: An empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chem Geol 108:133–162.

    Article  Google Scholar 

  • Pittman ED, Lumsden DN. 1968. Relationship between chlorite coatings on quartz grains and porosity, Spiro Sand, Oklahoma. J Sed Petrol 38:668–670.

    Article  Google Scholar 

  • Reynolds RC Jr. 1985. NEWMOD—A computer program for the calculation of one-dimensional diffraction profiles of clays. Hanover, New Hampshire: RC Reynolds, Jr, 8 Brook Road.

    Google Scholar 

  • Reynolds RC Jr, DiStefano MP, Lahann RW. 1992. Randomly interstratified serpentine/chlorite: Its detection and quantification by powder X-ray diffraction methods. Clays Clay Miner 40:40–267.

    Article  Google Scholar 

  • Ryan PC. 1994. Serpentine/chlorite and illite/smectite in the Tuscaloosa Formation: Origins, chemistry, mineralogic structures, and oxygen isotope compositions [Ph.D. thesis]. Hanover, NH: Dartmouth College. 177 p.

    Book  Google Scholar 

  • Ryan PC, Reynolds RC Jr. 1996. The origin and diagenesis of grain-coating serpentine-chlorite in Tuscaloosa Formation sandstone, U.S. Gulf Coast. Am Miner 81:213–225.

    Article  Google Scholar 

  • Schulze DG. 1982. The identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci Soc Am J 45:45–440.

    Google Scholar 

  • Shirozu H. 1958. X-ray powder and cell dimensions of some chlorites in Japan, with a note on their interference colors. Mineral J (Jpn) 2:209–223.

    Article  Google Scholar 

  • Shirozu H. 1980. Cation distribution, sheet thickness, and O-OH space in trioctahedral chlorites—An X-ray and infrared study. Mineral J (Jpn) 10:14–34.

    Article  Google Scholar 

  • Stancliffe RJ, Adams ER. 1986. Lower Tuscaloosa fluvial channel styles at Liberty Field, Amite County, Mississippi. Trans Gulf Coast Assoc Geol Soc 36:305–313.

    Google Scholar 

  • Thomsen A. 1982. Preservation of porosity in the Deep Woodbine/Tuscaloosa Trend, Louisiana. J Petrol Technol 34:1156–1162.

    Article  Google Scholar 

  • Velde B. 1989. Phyllosilicate formation in berthierine peloids and iron oolites. In: Young TP, Taylor WEG, editors. Phanerozoic ironstones. London: Geol Soc Spec Publ 46. p 3–8.

    Google Scholar 

  • Velde B, Raoult J-F, Leikine M. 1974. Metamorphosed berthierine pellets in mid-Cretaceous rocks from north-eastern Algeria. J Sed Petrol 44:44–1280.

    Google Scholar 

  • Walker JR, Hluchy MM, Reynolds RC Jr. 1988. Estimation of heavy atom content and distribution in chlorite using corrected X-ray powder diffraction intensities. Clays Clay Miner 36:359–364.

    Article  Google Scholar 

  • Walker JR, Thompson GR. 1990. Structural variations in illite and chlorite in a diagenetic sequence from the Imperial Valley, California. Clays Clay Miner 38:315–321.

    Article  Google Scholar 

  • Whitney PR, McClelland JM. 1983. Origin of biotite-horn-blende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack Region, New York. Contrib Mineral Petrol 82:34–41.

    Article  Google Scholar 

  • Whittle CK. 1986. Comparison of sedimentary chlorite compositions by X-ray diffraction and analytical TEM. Clay Miner 21:937–947.

    Article  Google Scholar 

  • Wiygul GJ, Young LM. 1987. A subsurface study of the Lower Tuscaloosa Formation at Olive Field, Pike and Amity Counties, Mississippi. Trans Gulf Coast Assoc Geol Soc 37:295–302.

    Google Scholar 

  • Yau YC, Peacor DR, Essene EJ. 1987. Authigenic anatase and titanite in shales from the Salton Sea geothermal field, California. Neues Jarbuch fuer Mineralogie, Monatshefte 10:441–452.

    Google Scholar 

  • Yoneyama H, Haga S, Yamanaka S. 1989. Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates of clay. J Phys Chem 93:93–4837.

    Article  Google Scholar 

  • Xu H, Veblen DR. 1993. Periodic and disordered interstratification and other microstructures in the chlorite-berthierine series [abstract]. Abstr Progr Geol Soc Am Annu Meet 25:146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, P.C., Reynolds, R.C. The Chemical Composition of Serpentine/Chlorite in the Tuscaloosa Formation, United States Gulf Coast: EDX vs. XRD Determinations, Implications for Mineralogic Reactions and the Origin of Anatase. Clays Clay Miner. 45, 339–352 (1997). https://doi.org/10.1346/CCMN.1997.0450305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1997.0450305

Key Words

Navigation