Skip to main content
Log in

Crystal Chemistry of Hydrous Iron Silicate Scale Deposits at the Salton Sea Geothermal Field

  • Published:
Clays and Clay Minerals

Abstract

The crystal chemistry of Fe-Si scales deposited from geothermal brines at Salton Sea, California, was studied by powder X-ray diffraction and spectroscopic techniques including infrared, 57Fe Mössbauer, 27 Al and 29Si nuclear magnetic resonance (NMR), and Fe and Si K-edge extended X-ray absorption fine structure (EXAFS). Scales precipitated at near 250°C from dissolved ferrous iron and silicic acid are composed of hisingerite. This phase is shown to possess the same local structure as nontronite and is a poorly-crystallized precursor of the ferric smectite. A clear distinction can be made at the local scale between hisingerite and 2-line ferrihydrite because, even in their most disordered states, the former possesses a two-dimensional and the latter a three-dimensional anionic framework. At temperature near 100°C Fe-Si scales are a mix of Al-containing opal and hydrous ferrous silicate, whose local structure resembles minnesotaite and greenalite. This hydrous ferrous silicate is very well ordered at the local scale with an average Fe coordination about Fe atoms of 6 ± 1. The difference in crystallinity between the ferrous and ferric silicate scales was related to variations of growth rates of clay particles precipitated from ferrous and ferric salt solutions. The low crystallinity of the ferric smectite suggests that the oxidation of ferrous iron occurs before polymerization with silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W. 1984. Crystal chemistry of the true micas. In Micas. S. W. Bailey, ed. Reviews in Mineralogy 13: 13–60.

    Chapter  Google Scholar 

  • Blaauw, C., G. Stroink, W. Leiper, and M. Zentilli. 1979. Crystal-field properties of Fe in brucite Mg(OH)2. Phys. Stat. Sol. (b) 92: 639–643.

    Article  Google Scholar 

  • Bonnin, D., G. Calas, H. Suquet, and H. Pezerat. 1985. Sites occupancy of Fe3+ in Garfield nontronite. Phys. Chem. Miner. 12: 55–64.

    Google Scholar 

  • Brigatti, M. F. 1982. Hisingerite: A review of its crystal chemistry. In Development in Sedimentology, 35. H. Van Olphen and F. Veniale, eds. Int. Clay Conf. Bologna and Pavia 1981. Amsterdam: Elsevier, 97–110.

    Google Scholar 

  • Brindley, G. W., and G. Brown. 1980. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society, 495 pp.

    Book  Google Scholar 

  • Cardile, C. M., and J. H. Johnson. 1985. Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays & Clay Miner. 33: 295–300.

    Article  Google Scholar 

  • Carlson, L, and U. Schwertmann. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45: 421–429.

    Article  Google Scholar 

  • Childs, C. W. 1992. Ferrihydrite: A review of structure, properties and occurrence in relation to soils. Z. Pflanze- nernärh. Bodenk. 155: 441–448.

    Article  Google Scholar 

  • Childs, C. W., N. Matsue, and N. Yoshinaga. 1990. Ferrihydrite deposits in Paddy Races, Aso-Dani. Clay Sci. 8: 915.

    Google Scholar 

  • Chukhrov, F. V., B. B. Zvyagin, A. I. Gorshkov, L. Ermilova, and V. V. Balashova. 1973. Ferrihydrite. Izvest. Akad. Nauk. SSSR (Ser. Geol.) 4: 23–33 (Russian). Trans, in Int. Geol. Rev. 16: 1131–1143.

    Google Scholar 

  • Coey, J. M. D. 1984. Mössbauer spectroscopy of silicate minerals. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. S. Long, ed. Plenum Press, 443–509.

    Chapter  Google Scholar 

  • Coey, J. M. D. 1988. Magnetic properties of iron in soil iron oxides and clay minerals. In Iron in Soils and Clay Minerals. J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds. NATO ASI series 217: 397–466.

    Article  Google Scholar 

  • Combes, J. M., A. Manceau, and G. Calas. 1990. Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. II. Hematite formation from ferric gels. Geochim. Cosmochim. Acta 54: 1083–1091.

    Article  Google Scholar 

  • Decarreau, A., and D. Bonnin. 1986. Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions. Clay Miner. 21: 861–877.

    Article  Google Scholar 

  • Decarreau, A., D. Bonnin, D. Badaut-Trauth, R. Couty, and P. Kaiser. 1987. Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Miner. 22: 207–223.

    Article  Google Scholar 

  • De Jong, B. H. W. S., J. Van Hoek, W. S. Veeman, and D. V. Mason. 1987. X-ray diffraction and 29Si magic anglespinning NMR of opals: Incoherent long- and short-range order in opal-CT. Amer. Mineral. 72: 1195–1203.

    Google Scholar 

  • Donnay, G., N. Morimoto, H. Takeda, and J. D. H. Donnay. 1964. Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst. 17: 1369–1373.

    Article  Google Scholar 

  • Drits, V. A., B. A. Sakharov, A. L. Salyn, and A. Manceau. 1993. Structural model for ferrihydrite. Clay Miner. 28: 185–208.

    Article  Google Scholar 

  • Eggleton, R. A. 1977. Nontronite: Chemistry and X-ray diffraction. Clay Miner. 12: 181–194.

    Article  Google Scholar 

  • Eggleton, R. A. 1988. The application of micro-beam methods to iron minerals in soils. In Iron in Soils and Clay Minerals. J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds. NATO ASI series 217: 165–201.

    Article  Google Scholar 

  • Eggleton, R. A., J. H. Pennington, R. S. Freeman, and I. M. Threadgold. 1983. Structural aspects of hisingerite-neotecite series. Clay Miner. 18: 21–31.

    Article  Google Scholar 

  • Farmer, V. C. 1991. Possible confusion between so-called ferrihydrites and hisingerites. Clay Miner. 27: 373–378.

    Article  Google Scholar 

  • Farmer, V. C., G. S. R. Krishnamurti, and P. M. Huang. 1991. Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays & Clay Miner. 39: 561–571.

    Article  Google Scholar 

  • Farmer, V. C., W. J. McHardy, F. Elsass, and M. Robert. 1994. Afc-ordering in aluminous nontronite and saponite synthesized near 90°C: Effects of synthesis conditions on nontronite composition and ordering. Clays & Clay Miner. 42: 180–186.

    Article  Google Scholar 

  • Fleischer, M., G. Y. Chao, and A. Kato. 1975. New mineral names: Ferrihydrite (M.F.). Amer. Mineral. 60: 485–486.

    Google Scholar 

  • Gallup, D. L. 1989. Iron silicate scale formation and inhibition at the Salton Sea geothermal field. Geothermics 18: 97–103.

    Article  Google Scholar 

  • Gallup, D. L. 1993. The use of reducing agents for control of ferric silicate scale deposition. Geothermics 22: 39–48.

    Article  Google Scholar 

  • Gallup, D. L., and J. L. Featherstone. 1994. Control of NORM deposition from Salton Sea geothermal brines. Geotherm. Sci. & Tech. 8: 1–12.

    Google Scholar 

  • Gallup, D. L., and W. M. Reiff. 1991. Characterization of geothermal scale deposits by Fe-57 Mössbauer spectroscopy and complementary X-ray diffraction and infra-red studies. Geothermics 20: 207–224.

    Article  Google Scholar 

  • Goodman, B. A., J. D. Russell, A. R. Fraser, and F. W. D. Woodhams. 1976. A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays & Clay Miner. 24: 53–59.

    Article  Google Scholar 

  • Grüner, J. W. 1935. The structural relationship of nontronite and montmorillonite. Amer. Mineral. 20: 475–483.

    Google Scholar 

  • Guggenheim, S., S. W. Bailey, R. A. Eggleton, and P. Wilkes. 1982. Structural aspects of greenalite and related minerals. Can. Min. 20: 1–18.

    Google Scholar 

  • Guggenheim, S., and R. A. Eggleton. 1986. Structural modulations in iron rich and magnesium rich minerals. Can. Miner. 24: 477–497.

    Google Scholar 

  • Hazen, R. M., and C. W. Burnham. 1973. The crystal structures of one-layer phlogopite and annite. Amer. Mineral. 58: 889–900.

    Google Scholar 

  • Hoyer, D., K. Kitz, and D. Gallup. 1991. Salton Sea Unit 2. Innovations and successes. Geo. Res. Council Trans. 15: 355–361.

    Google Scholar 

  • Kohyama, N., and T. Sudo. 1975. Hisingerite occurring as a weathering product of iron-rich saponite. Clays & Clay Miner. 23: 215–218.

    Article  Google Scholar 

  • Liebau, F. 1985. Structural Chemistry of Silicates. Structure, Bonding, and Classification. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • Lindqvist, B., and S. Jansson. 1962. On the crystal chemistry of hisingerite. Amer. Mineral. 47: 1356–1362.

    Google Scholar 

  • Lippmaa, E., M. Magi, A. Samoson, G. Engelhardt, and A. R. Grimmer. 1980. Structural studies of silicates by solidstate high resolution 29Si NMR. J. Amer. Chem. Soc. 102: 7606–7607.

    Article  Google Scholar 

  • Manceau, A. 1990. Distribution of cations among the octahedra of phyllosilicates: Insight from EXAFS. Can. Miner. 28: 321–328.

    Google Scholar 

  • Manceau, A., D. Bonnin, P. Kaiser, and C. Frétigny. 1988. Polarized EXAFS of biotite and chlorite. Phys. Chem. Miner. 16: 180–185.

    Article  Google Scholar 

  • Manceau, A., D. Bonnin, W. E. E. Stone, and J. Sanz. 1990. Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS. Comparison with NMR results. Phys. Chem. Miner. 17: 363–370.

    Article  Google Scholar 

  • Manceau, A., and G. Calas. 1986. Ni-bearing clay minerals. 2. X-ray absorption study of Ni-Mg distribution. Clay Miner. 21: 341–360.

    Article  Google Scholar 

  • Manceau, A., and V. A. Drits. 1993. Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Miner. 28: 165–184.

    Article  Google Scholar 

  • McKale, A. G., B. W. Veal, A. P. Paulikas, S. K. Chan, and G. S. Knapp. 1988. Improved ab initio calculations for extended absorption fine structure spectroscopy. J. Amer. Chem. Soc. 110: 3763–3768.

    Article  Google Scholar 

  • McKenzie, K. J. D., and R. M. Berezowski. 1980. Thermal and Mössbauer studies of iron-containing hydrous silicates. II. Hisingerite. Thermochim. Acta 41: 335–355.

    Article  Google Scholar 

  • Milkey, R. G. 1960. Infrared spectra of some tectosilicates. Amer. Mineral. 45: 990–1007.

    Google Scholar 

  • Miyamoto, H. 1976. The magnetic properties of Fe(OH)2. Mat. Res. Bull. 11: 329–336.

    Article  Google Scholar 

  • Mizutani, T., Y. Fukushima, A. Okada, O. Kamigaito, and T. Kobayashi. 1991. Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clay & Clay Miner. 39: 381–386.

    Article  Google Scholar 

  • Moenke, H. H. W. 1974. Silica, the three-dimensional silicates, borosilicates, and beryllium silicates. In The Infrared Spectra of Minerals. V. C. Farmer, ed. Mineralogical Society Monograph 4: 365–382.

    Article  Google Scholar 

  • Mozzi, R. L., and B. E. Warre. 1969. The structure of Vitreous Silica. J. Appl. Cryst. 2: 164–172.

    Article  Google Scholar 

  • Müller, D., W. Gessner, H. J. Behrens, and G. Scheler. 1981. Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high resolution 27 A1 NMR. Chem. Phys. Letters 79: 59–62.

    Article  Google Scholar 

  • Noack, Y., A. Decarreau, and A. Manceau. 1986. Spectroscopic and isotopic evidence for low and high temperature origin of talc. Bull. Miner. 109: 253–263.

    Google Scholar 

  • Oles, A., A. Szytula, and A. Wanic. 1970. Neutron diffraction study of γFeOOH. Phys. Status Solidi 41: 173–177.

    Article  Google Scholar 

  • Rozenson, I., and L. Heller-Kallai. 1977. Mössbauer spectra of dioctahedral smectites. Clays & Clay Miner. 25: 94–101.

    Article  Google Scholar 

  • Schwertmann, U., and E. Murad. 1983. The effect of pH on the formation of goethite and hematite from ferrihydrite. Clay & Clay Miner. 31: 277–284.

    Article  Google Scholar 

  • Schwertmann, U., and H. Thalmann. 1976. The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner. 11: 189–199.

    Article  Google Scholar 

  • Shayan, A. 1984. Hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clay & Clay Miner. 32: 272–278.

    Article  Google Scholar 

  • Spadini, L., A. Manceau, P. W. Schindler, and L. Charlet. 1994. Structure and stability of Cd2+ surface complexes on ferric oxides. J. Coll. Interf. Sci. (in press).

    Google Scholar 

  • Sudo, T., and T. Nakamura. 1952. Hisingerite from Jaan. Amer. Mineral. 37: 618–621.

    Google Scholar 

  • Teo, B. K. 1986. EXAFS: Basic Principles and Data Analysis. Inorganic Chemistry Concepts 9. Berlin, Springer-Verlag, 369 pp.

    Book  Google Scholar 

  • Vempati, R. K., and R. H. Loepert. 1985. Structure and transformation of siliceous ferrihydrites. American Society of Agronomy Annual Meeting. Agron. Abstracts, 152.

    Google Scholar 

  • Vempati, R. K., and R. H. Loepert. 1989. Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite. Clay & Clay Miner. 37: 273–279.

    Article  Google Scholar 

  • Waychunas, G. A., B. A. Rea, C. C. Fuller, and J. A. Davis. 1993. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57: 2251–2269.

    Article  Google Scholar 

  • Webb, J. A., and B. L. Finlayson. 1987. Incorporation of Al, Mg, and water in opal-A: Evidence from speleothems. Amer, Mineral. 72: 1204–1210.

    Google Scholar 

  • Whelan, J. A., and S. S. Goldich. 1961. New data for hisingerite and neotocite. Amer. Mineral. 46: 1412–1423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manceau, A., Ildefonse, P., Hazemann, J.L. et al. Crystal Chemistry of Hydrous Iron Silicate Scale Deposits at the Salton Sea Geothermal Field. Clays Clay Miner. 43, 304–317 (1995). https://doi.org/10.1346/CCMN.1995.0430305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1995.0430305

Key words

Navigation