Skip to main content

Magnetic Properties of Iron in Soil Iron Oxides and Clay Minerals

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The pie chart in Fig. 14-1 indicates the abundance of Fe relative to other major elements in the earth’s crust. It is the only one of the nine to bear a magnetic moment in its compounds. The bar chart compares the abundance of Fe with that of other magnetic ions, on a logarithmic scale. Since Fe is approximately forty times more abundant than all the others put together, it follows that magnetic properties of soils and clay minerals derive essentially from the Fe they contain. Magnetic measurements are highly specific to Fe, but, as we shall see, they are much more sensitive to some mineral forms (e.g., magnetite, maghemite, pyrrhotite) than to others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Artman, J. O., J. C. Murphy, and S. Foner. 1965. Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides. Phys. Rev. 138:A912-A917.

    Article  Google Scholar 

  2. Bacon, G.E. 1979. Neutron Diffraction, pp. 1–135. In G. M. Kalvius and R. S. Teble (eds.) Experimental Magnetism, Vol. 1. Wiley, Chichester.

    Google Scholar 

  3. Ballet, O. 1979. Fe2+ dans les silicates lamellaires--etude magnetique et Mössbauer. Thèse de Troisième Cycle, Université de Grenoble.

    Google Scholar 

  4. Ballet, O., and J. M. D. Coey. 1982. Magnetic properties of sheet silicates: 2:1 layer minerals. Phys. Chem. Miner. 8:218–229.

    Article  CAS  Google Scholar 

  5. Ballet, O., J. M. D. Coey, P. Mangin, and M. G. Townsend. 1985a. Ferrous talc — a planar antiferromagnet. Solid State Comm. 55:787–790.

    Article  CAS  Google Scholar 

  6. Ballet, O., J. M. D. Coey, and K. J. Burke. 1985b. Magnetic properties of sheet silicates: 2:1:1 layer minerals. Phys. Chem. Miner. 12:370–378.

    Article  CAS  Google Scholar 

  7. Beausoleil, N., P. Lavallée, A. Yelon, O. Ballet, and J. M. D. Coey. 1983. Magnetic properties of biotite micas. J. Appl. Phys. 54:906–915.

    Article  CAS  Google Scholar 

  8. Besser, P. J., A. H. Morrish, and C. W. Searle. 1967. Magnetocrys-talline anisotropy of pure and doped hematite. Phys. Rev 153:632–640.

    Article  CAS  Google Scholar 

  9. Bonnin, D. 1981. Propriétés magnetiques liées aux desordres bidimensionnels dans un silicate lamellaire ferrique: la nontronite. Etude par spectrometrie Môssbauer, resonances magnetiques, magnetisme et EXAFS. These d’Etat, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  10. Bleaney, R., and K. W. H. Stevens. 1953. Paramagnetic resonance. Rep. Prog. Phys. 16:131–136.

    Article  Google Scholar 

  11. Burns, R. G. 1980. Does feroxyhite occur on the surface of Mars? Nature 285:647.

    Article  CAS  Google Scholar 

  12. Carlin, R. L., and A. J. van Duyneveldt. 1977. Magnetic Properties of Transition Metal Compounds. Springer, Berlin.

    Google Scholar 

  13. Christensen, H., and A. N. Christensen. 1978. Hydrogen bonds in FeOOH. Acta Chem. Scand. A32:87–88.

    Article  CAS  Google Scholar 

  14. Coey, J. M. D. 1971. Non-collinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Letters 27:1140–1142.

    Article  CAS  Google Scholar 

  15. Coey, J. M. D., A. H. Morrish, and G. A. Sawatzky. 1971. A Môssbauer study of conduction in magnetite. J Phys. 32, CI: 271–273.

    Google Scholar 

  16. Coey, J. M. D., and D. Khalafalla. 1972. Superparamagnetic γFe2O3. Phys. Stat. Sol. A11:229–241.

    Article  Google Scholar 

  17. Coey, J. M. D., and P. W. Readman. 1973a. New spin structure in an amorphous ferric gel. Nature 246:476–478.

    Article  CAS  Google Scholar 

  18. Coey, J. M. D., and P. W. Readman. 1973b. Characterisation and magnetic properties of natural ferric gel. Earth Planetary Sci. Lett. 21:45–51.

    Article  CAS  Google Scholar 

  19. Coey, J. M. D. 1980. Clay minerals and their transformations studied with nuclear techniques. At. Energy Rev. 18:73–124.

    CAS  Google Scholar 

  20. Coey, J. M. D., O. Ballet, A. Moukarika, and J. L. Soubeyroux. 1981. Magnetic properties of sheet silicates: 1:1 layer minerals. Phys. Chem. Miner. 7:141–148.

    Article  CAS  Google Scholar 

  21. Coey, J. M. D., A. Moukarika, and C. M. Monagh. 1982. Electron hopping in cronstedtite. Solid State Comm. 41:797–800.

    Article  CAS  Google Scholar 

  22. Coey, J. M. D. 1984. Mössbauer spectroscopy of silicate minerals, p. 443–509. In G. J. Long (ed.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1. Plenum, New York.

    Google Scholar 

  23. Crangle, J. 1977. The Magnetic Properties of Solids. Arnold, London.

    Google Scholar 

  24. Curi, N., and D. P. Franzmeier. 1984. Toposequence of oxisols from the central plateau of Brazil. Soil Sci. Soc. Am. J. 48:341–346.

    Article  CAS  Google Scholar 

  25. de Grave, E., L. H. Bowen, and S. B. Weed. 1982. Mössbauer study of aluminum-substituted hematites. J. Magn. Mag. Mat. 27:98–108.

    Article  Google Scholar 

  26. Fleisch, J., R. Grimm, J. GrĂ¼bler, and P. Gutlich. 1980. Determination of the aluminium content of natural and synthetic aluminogoethites. J. Phys. 41, CI: 160–170.

    Google Scholar 

  27. Forsyth, J. B., I. G. Hedley, and C. E. Johnson. 1968. The magnetic structure and hyperfine field of goethite (αFeOOH). J. Phys. 29, CI: 179–188.

    Google Scholar 

  28. Fysh, S. A., J. D. Cashion, and P. E. Clark. 1983. Mössbauer effect studies of iron in kaolin. Clays Clay Miner. 31:285–292.

    Article  CAS  Google Scholar 

  29. Gibb, T. C. 1985. Introduction to Mössbauer Spectroscopy. Chapman and Hall, London.

    Google Scholar 

  30. Goodenough, J. B. 1963. Magnetism and the Chemical Bond. Wiley-Interscience, New York.

    Google Scholar 

  31. Goodenough, J. B. 1980. The Verwey transition revisited, p. 413–425. In D. B. Brown (ed.) Mixed Valence Compounds. D. Reidel, Dordrecht.

    Google Scholar 

  32. Goodman, B. A. 1980. Mössbauer Spectroscopy in Advanced Chemical Methods for Soil and Clay Mineral Research, p. 1–92. In J. W. Stucki and W. L. Banwart (eds.) D. Reidel, Dordrecht.

    Google Scholar 

  33. Groupe de Diffusion des Neutrons. 1971. Experimental determination of exchange integrals in magnetite. J. Phys. 32, CI:1182–1183.

    Google Scholar 

  34. Hallam, A. 1973. A Revolution in the Earth Sciences. Oxford University Press, Oxford.

    Google Scholar 

  35. Hedley, I. G. 1971. The weak ferromagnetism of goethite (αFeOOH). Z. Geophys. 37:409–420.

    Google Scholar 

  36. Heller-Kallai, L., and I. Rozenson. 1981. The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Miner. 7:223–23.

    Article  CAS  Google Scholar 

  37. Hutchings, M. T. 1964. Point-charge calculations of energy levels of magnetic ions in crystalline electric fields. Solid State Phys. 16: 227–273.

    Article  CAS  Google Scholar 

  38. Ingalls, R. 1964. Electric field gradient tensor in ferrous compounds. Phys. Rev. 133 (3A):A787-A795.

    Article  Google Scholar 

  39. Lindsley, D. H. 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, p. 1–52. In D. Rumble (ed.) Oxide Minerals. Reviews in Mineralogy, Vol. 3. Mineralogical Society of America, Washington, D. C.

    Google Scholar 

  40. Martin, D. H. 1967. Magnetism in Solids. Iliffe, London.

    Google Scholar 

  41. Moorjani, K., and J. M. D. Coey. 1984. Magnetic Glasses. Elsevier, Amsterdam.

    Google Scholar 

  42. Mørup, S. 1983. Magnetic hyperfine splitting in Mössbauer spectra of microcrystals. J. Magn. Mag. Mat. 37:39–50.

    Article  Google Scholar 

  43. Mørup, S., J. A. Dumesic, and H. Topsøe. 1980. Magnetic micro-crystals. p. 1–45. In R. L. Cohen (ed.) Applications of Mössbauer Spectroscopy. Vol. 2. Academic Press, New York.

    Google Scholar 

  44. Miyamoto, H. 1976. The magnetic properties of Fe(OH)2. Mat. Res. Bull. 11:329–336.

    Article  CAS  Google Scholar 

  45. Mullins, C. E. 1977. Magnetic susceptibility of the soil and its significance in soil science - a review. J. Soil Sci. 28:223–246.

    Article  CAS  Google Scholar 

  46. Murad, E. 1979. Mossbauer and X-ray data on OH. Clay Miner. 14: 273–283.

    Article  CAS  Google Scholar 

  47. Murad, E. 1987. Characterization of Fe oxides by Mossbauer spectroscopy. p. 309–350. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  48. Murad, E., and U. Schwertmann. 1980. The Mossbauer spectrum of ferrihydrite and its relation to those of other iron oxides. Am. Mineral. 65:1044–1049.

    Google Scholar 

  49. Murad, E., and U. Schwertmann. 1984. The influence of crystallinity on the Mossbauer spectrum of lepidocrocite. Mineral. Mag. 48:507–511

    Article  CAS  Google Scholar 

  50. Néel, L. 1949. Théorie de l’aimantation thermoremanente. Ann. Geophys. 5:99–150.

    Google Scholar 

  51. Nishitani, T., and M. Kono. 1983. Curie temperature and lattice constant of oxidized titanomagnetite. Geophys. J. Royal Ast. Soc. 74:585–600.

    CAS  Google Scholar 

  52. Okamoto, S. 1968. Structure of δFOH. J. Am. Ceram. Soc. 51: 594–599.

    Article  CAS  Google Scholar 

  53. O’Reilly, W. 1984. Rock and Mineral Magnetism. Blackie, Glasgow.

    Google Scholar 

  54. Parkomenko, E. I. 1982. Electrical resistivity of minerals and rocks at high temperature and pressure. Rev. Geophys. Space Phys. 20: 193–218.

    Article  Google Scholar 

  55. Pernet, M., X. Obradors, J. Fontcuberta, J. C. Joubert, and J. Tejada. 1984. Magnetic structure and superparamagnetic properties of δFOH. IEEE Trans. Mag., MAG 20:1524–1525.

    Article  Google Scholar 

  56. Readman, P. W., and W. O’Reilly. 1972. Magnetic properties of oxidized titanomagnetites (Fe,Ti)3O4. J. Geomag. Geoelectr. 24:69–90.

    Article  CAS  Google Scholar 

  57. Resende, M., J. M. D. Coey, and J. E. M. Allan. 1986. The Magnetic Soils of Brazil. Earth Planet. Sci. Lett. 78:322–326.

    Article  CAS  Google Scholar 

  58. Samuelson, E. J., and G. Shirane. 1970. Inelastic neutron scattering investigation of spin waves and magnetic interactions in Fe2O3. Phys. Stat. Sol. 42:241.

    Article  Google Scholar 

  59. Shirane, G., S. J. Pickart, R. Nathans, and Y. Ishikawa. 1959. Neutron diffraction study of antiferromagnetic FeTi03 and its solid solution with αFe2O3. J. Phys. Chem. Solids 10:35–43.

    Article  CAS  Google Scholar 

  60. Smart, J. S. 1966. Effective Field Theories of Magnetism. Saunders, Philadelphia.

    Google Scholar 

  61. Spender, M. R., J. M. D. Coey, and A. H. Morrish. 1972. The magnetic properties and Mossbauer spectra of synthetic samples of Fe3S4. Can. J. Phys. 50:2313–2326.

    Article  CAS  Google Scholar 

  62. Stryjewski, E., and N. Giordani. 1977. Metamagnetism. Adv. Phys. 26:487–650.

    Article  CAS  Google Scholar 

  63. Townsend, M. G., A. H. Webster, J. L. Harwood, and H. Roux-Buisson. 1979. Ferrimagnetic transition in Fe0.9S: magnetic, thermodynamic and kinetic aspects. J. Phys. Chem. Solids 40: 183–189.

    Article  CAS  Google Scholar 

  64. Turner, G. M., and R. Thompson. 1981. Lake sediment record of the secular geomagnetic variation in Britain during holocene times. Geophys. J. Royal Astr. Soc. 65:703–725.

    Google Scholar 

  65. Varret, F. 1976. Crystal field effects on high-spin ferrous iron. J. Phys. 37, C6:437–456.

    Google Scholar 

  66. Wertheim, G. K. 1984. Mössbauer Effect: Principles and Applications. Academic Press, New York.

    Google Scholar 

  67. Young, A. P. 1981. Renormalization Group Theory and magnetic phase transitions, p. 393–436. In A. P. Cracknell and R. A. Vaughan (eds.) Magnetism in Solids. SUSSP, Edinburgh.

    Google Scholar 

  68. Zallen, R. 1983. The Physics of Amorphous Solids. Wiley-Interscience, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Coey, J.M.D. (1988). Magnetic Properties of Iron in Soil Iron Oxides and Clay Minerals. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics