Skip to main content
Log in

27Al Mas NMR and Aluminum X-Ray Absorption Near Edge Structure Study of Imogolite and Allophanes

  • Published:
Clays and Clay Minerals

Abstract

This paper compares the results of 27Al nuclear magnetic resonance spectroscopy (NMR) and Al-K-edge X-ray Absorption Near Edge Structure (XANES) of natural imogolite and allophanes and some crystalline reference minerals. All soil allophanes studied contain 4-coordinated Al (AlIV). The highest relative proportion of AlIV, 21% of the total Al, was found in Si-rich allophane. This value is close to that found in spring allophanes, which were previously considered to be different from soil allophanes. For a quantitative determination of the AlIV/Altotal ratio, NMR is more reliable than XANES, because of the sensitivity of the chemical shift to low AlIV concentrations, but XANES may be used even if paramagnetic impurities (mostly Fe) are present. Al-K XANES also yields more information than NMR on the local environment of AlVI and especially site multiplicity. AlVI XANES of imogolite and allophanes are similar regardless of the Al/Si ratio. They yield two well-resolved resonances with maxima near 1568 and 1570 eV, which indicates the presence of a unique AlVI site by comparison with crystalline references. The presence of only one AlVI site indicates that imogolite and allophanes have an octahedral sheet with a structure similar to 2/1 dioctahedral phyllosilicates but different from gibbsite or kaolinite, previously considered as structural analogues. The 27AlIV MAS NMR peak maxima of allophanes are between 58.6 and 59.8 ppm, in the range observed for crystalline and amorphous framework alumino-silicates, and less positive than those of sheet silicates, which are typically in the range 65–75 ppm. 27Al-H1 CPMAS NMR spectra suggest that both AlIV and AlVI have Al-O-H linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottera, J. Y., Axelos, M., Tchoubar, D., Cases, J., Fripiat, J. J., and Fiessinger, F. (1987) Mechanism of formation of aluminum trihydroxyde from Keggin Al13 polymers: J.Coll. Interf. Sci. 117, 47–57.

    Article  Google Scholar 

  • Brown, G. E., Calas, G., Waychunas, G. A., and Petiau, J. (1988) X-ray absorption spectroscopy: Applications in mineralogy and geochemistry: in Spectroscopic Methods in Mineralogy and Geology, F. C. Hawthorne, ed., Reviews in Mineralogy 18, 431–512.

    Google Scholar 

  • Childs, C. W., Parfitt, R. L., and Newman, R. H. (1990) Structural studies of Silica Springs allophane: Clay Miner. 25, 329–341.

    Article  Google Scholar 

  • Cradwick, P. D. G., Farmer, V. C, Russell, J. D., Masson, C. R., Wada, K., and Yoshinaga, N. (1972) Imogolite, a hydrated aluminum silicate of tubular structure: Nature Phys. Sci. 240, 187–189.

    Article  Google Scholar 

  • Deng, Z., Lambert, J. F., and Fripiat, J. J. (1989) Pillaring puckered layer silicates: Chem. Mat. 1, 640–650.

    Article  Google Scholar 

  • Dupree, R., Lewis, M. H., and Smith, M. E. (1988) Structural characterization of ceramic phases with high resolution 27Al NMR: J. Appl. Cryst. 21, 109–116.

    Article  Google Scholar 

  • Farmer, V. C. and Fraser, A. R. (1979) Synthetic imogolite, a tubular hydroxyaluminum silicate: in Proc. Intern. Clay Conf., Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 547–553.

    Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1990) The structure and genesis of allophanes and imogolite; their distribution in non-volcanic soils: in Soil Colloids and Their Association in Aggregates, M. F. De Boodt, M. H. B. Hayes, and A. Herbillon, eds., Plenum Press, New York, 165–178.

    Chapter  Google Scholar 

  • Farnan, I., Kohn, S. C., and Dupree, R. (1987) A study of the structural role of water in hydrous silica glass using cross-polarization magic angle spinning NMR: Geochim. Cosmochim. Acta 51, 2869–2873.

    Article  Google Scholar 

  • Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M., and Ramdas, S. (1982) Resolving cristallographically distinct sites in silicalite and ZSM-5 by solid state NMR: Nature 296, 530–536.

    Article  Google Scholar 

  • Garcia, J., Bianconi, A., Benfatto, M., and Natoli, C. R. (1986) Coordination geometry of transition metal ions in dilute solutions by XANES: J. Phys., Colloque C8, 47, 49–54.

    Google Scholar 

  • Goodman B. A., Russell, J. D., Montez, B., Oldneld, E., and Kirkpatrick, R. J. (1985) Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy: Phys. Chem. Minerals 12, 342–346.

    Article  Google Scholar 

  • Hartmann, S. R. and Hahn, E. L. (1962) Nuclear double resonance in the rotating frame: Phys. Rev. 128,2042–2053.

    Article  Google Scholar 

  • Ildefonse, Ph., Calas, G., Flank, A. M., and Lagarde, P. (1992) Local aluminum environment in clay minerals by XAS. Agronomy Abstracts, 1992 Annual Meetings, Amer. Soc. Agron., Crop Sci. Soc. Amer., Soil Sci.Soc, Clay Min. Soc, p. 373.

    Google Scholar 

  • Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A., and Oldneld, E. (1985) High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals: Amer. Mineral. 70, 537–548.

    Google Scholar 

  • Kirkpatrick, R. J. (1988) MAS NMR spectroscopy of minerals and glasses: in Spectroscopic Methods in Mineralogy and Geology, F. C. Hawthorne, ed., Reviews in Mineralogy 18, 341–403.

    Article  Google Scholar 

  • Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G., and Yang, W. H. (1985) Solid-state nuclear magnetic resonance spectroscopy of minerals: Ann. Rev. Earth Planet. Sci. 13, 29–47.

    Article  Google Scholar 

  • Lengeier, B. and Eisenberger, P. (1980) Extended X-ray absorption fine structure analysis of interatomic distances, coordination numbers, and mean relative displacements in disordered alloys: Phys. Rev. B 10, 4507–4520.

    Article  Google Scholar 

  • MacKenzie, K. J. D., (1970) Thermal decomposition of Derbyshire allophane: Clay Miner. 8, 349–351.

    Article  Google Scholar 

  • MacKenzie, K. J. D., Bowden, M. E., Brown, I. W. M., and Meinhold, R. H. (1989) Structure and thermal transformation of imogolite studied by 29Si and 27Al high-resolution solid-state nuclear magnetic resonance: Clays & Clay Minerals 37, 317–324.

    Article  Google Scholar 

  • MacKenzie, K. J. D., Bowden, M. E., and Meinhold, R. H. (1991) The structure and thermal transformations of al-lophanes studied by 29Si and 27Al high resolution solid-state NMR: Clays & Clay Minerals 39, 337–346.

    Article  Google Scholar 

  • McKeown, D. A. (1989) Aluminum X-ray absorption near edge spectra of some oxide minerals: Calculation vs. experimental data: Phys. Chem. Miner. 16, 678–683.

    Article  Google Scholar 

  • McKeown, D. A., Waychunas, G. A. and Brown, G. E. (1985) EXAFS study of the coordination environment of aluminum in a series of silica-rich glasses and selected minerals within the Na2O-Al2O,-SiO, system: J. Non-Crystalline Solids 74, 349–371.

    Article  Google Scholar 

  • Müller, D., Gessner, W., Behrens, H. J., and Scheler, G. (1981) Determination of the aluminum coordination in aluminum-oxygen compounds by solid-state high resolution 27Al NMR: Chem. Phys. Letters 79, 59–62.

    Article  Google Scholar 

  • Oestrike, R. and Kirkpatrick, R. J. (1988) 27Al and 29Si MASS NMR spectroscopy of glasses in the system anorthite-diopside-forsterite: Amer. Mineral. 73, 534–546.

    Google Scholar 

  • Oestrike, R., Yang, W. H., Kirkpatrick, R. J., Hervig, R. L., Navrotsky, A., and Montez, B. (1987) High-resolution 23NA, 27Al, and 29Si NMR spectroscopy of framework aluminosilicate glasses: Geochim. Cosmoch. Acta 51, 2199–2209.

    Article  Google Scholar 

  • Oldneld, E., Kinsey, R. A., Smith, K. A., Nichols, J. A., and Kirkpatrick, R. J. (1983) High resolution NMR of inorganic solids. Influence of magnetic centres on magic angle sample-spinning lineshapes in some natural aluminosilicates: J. Magn. Reson. 51, 325–329.

    Google Scholar 

  • Parfitt, R. L. (1990) Allophane in New Zealand—A review: Austr. J. Soil Res. 28, 343–360.

    Article  Google Scholar 

  • Parfitt, R. L. and Henmi, T. (1980) Structure of some allophanes from New-Zealand: Clays & Clay Minerals 28, 285–294.

    Article  Google Scholar 

  • Parfitt, R. J. and Kimble, J. M. (1990) Conditions of formation of allophane in soils: Soil Sci. Soc. Am. J. 53, 971–977.

    Article  Google Scholar 

  • Petiau, J., Calas, G., and Sainctavit, P. (1987) Recent developments in the experimental studies of XANES: J. Phys. C9 48, 1085–1096.

    Article  Google Scholar 

  • Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J. (1985) High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays: J. Am. Chem. Soc. 107, 2362–2369.

    Article  Google Scholar 

  • Risbud, S. H., Kirkpatrick, R. J., Taglialavore, A. P., and Montez, B. (1987) Solid-state NMR evidence of 4-, 5-, and 6-fold aluminum sites in roller-quenched Si02-Al203 glasses: J. Amer. Ceram. Soc. 70, 10–12.

    Article  Google Scholar 

  • Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH)3: Z. für Kristallog. 139: 129–135.

    Google Scholar 

  • Sanz, J. and Serratoza, J. M. (1984) Distinction of tetra-hedrally and octahedrally coordinated Al in phyllosilicates by NMR spectroscopy: Clay Miner. 19, 113–115.

    Article  Google Scholar 

  • Taylor, M. and Brown Jr, G. E. (1979) Structure of mineral glasses: I. The feldspar glasses NaAl Si3Oi, KAl Si3O8, CaAlSi2O8: Geochim. Cosmochim. Acta 43, 61–75.

    Article  Google Scholar 

  • Theng, B. K. G., Russell, M., Churchman, G. J., and Parfitt, R. L. (1982) Surface properties of allophane, halloysite, and imogolite: Clays & Clay Minerals 30, 143–149.

    Article  Google Scholar 

  • Van der Gaast, S. J., Wada, K., Wada, S. I., and Kakuto, Y. (1985) Small-angle X-ray powder diffraction, morphology, and structure of allophane and imogolite: Clays & Clay Minerals, 33, 237–243.

    Article  Google Scholar 

  • Wada, K. (1977) Allophane and imogolite: in Minerals in Solid Environments, J. B. Dixon and S. B. Weeds, eds., Soil Science Society America, Madison, Wisconsin, 603–638.

    Google Scholar 

  • Wada, K. (1979) Structural formulas of allophanes: in Proc. Intern. Clay Conf, 1978. Oxford, M. M. Mortland and V. C. Farmer, eds., Developments in Sedimentology 27, Elsevier, Amsterdam, 537–545.

    Article  Google Scholar 

  • Wada, S. I. and Wada, K. (1977) Density and structure of allophane: Clay Miner. 12, 289–298.

    Article  Google Scholar 

  • Webb, J. A. and Finlayson, B. L. (1987) Incorporation of Al, Mg, and water in opal A: Evidence from speleotherms: Amer. Mineral. 72, 1240–1210.

    Google Scholar 

  • Wilson, M. A., Barron, P. F., and Campbell, A. S. (1984) Detection of aluminum coordination in soils and clay fraction using 27Al magic angle spinning NMR: J. Soil Sci. 35, 201–207.

    Article  Google Scholar 

  • Woessner, D. E. (1989) Characterization of clay minerals by 27Al nuclear resonance spectroscopy: Amer. Mineral. 74, 203–215.

    Google Scholar 

  • Yang, W. H. and Kirkpatrick, R. J. (1989) Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study: Geochim. Cosmochim. Acta 53, 805–819.

    Article  Google Scholar 

  • Yoshinaga, N. and Aomine, S. (1962) Allophane in some Ando soils: Soil Sc. Plant. Nutr. 8, 6–13.

    Article  Google Scholar 

  • Young, A. W., Campbell, A. S., and Walker, T. W. (1980) Allophane isolated from a podzol developed on a non-vitric parent material: Nature 284, 46–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ildefonse, P., Kirkpatrick, R.J., Montez, B. et al. 27Al Mas NMR and Aluminum X-Ray Absorption Near Edge Structure Study of Imogolite and Allophanes. Clays Clay Miner. 42, 276–287 (1994). https://doi.org/10.1346/CCMN.1994.0420306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420306

Key Words

Navigation