Skip to main content
Log in

The Surface Coulomb Energy And Proton Coulomb Potentials Of Pyrophyllite {010}, {110}, {100}, and {130} EDGES

  • Published:
Clays and Clay Minerals

Abstract

This paper describes structural models of four pyrophyllite edge faces: {010}, {110}, {100}, and {130}. Water molecules chemisorbed to Lewis acid sites stabilize edge faces both crystallochemically and electrostatically. The detailed assignment of protons to surface oxygens and the orientation of OH bond-vectors both influence the surface Coulomb energy.

The geometry chosen for the electrostatic calculations was infinite pyrophyllite ribbon the thickness of a single phyllosilicate layer and the width of 50 to 70 unit cells. Such a phyllosilicate ribbon has only two edges, a top and bottom, which were simulated using the edge-face models mentioned above. About 94% of the surface Coulomb energy is confined to the edge-face repeat unit. The surface Coulomb energies of the four edge faces are on the order of 2–3 nJ/m, varying ± 1 nJ/m with proton assignment. The Coulomb potential, measured either within the layer or parallel to the layer, has a distinct negative trend near the edge face that can be traced to chemisorbed water molecules. Finally, the correlation between proton Coulomb potentials at the edge face and the coordination environment of the protons is poor, obscured by long-range interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre, J. M., Fripiat, J. G., Demanet, C., Bredas, J. L., and Delhalle, J. (1978) Long-range Coulombic interactions in the theory of polymers: A statement of the problem and a method for calculation by the Fourier transformation method: Int. J. Quantum Chem. Quantum Chem. Symp. 12, 233–247.

    Google Scholar 

  • Bleam, W. F. (1990) The electrostatic potential at the basal {001} surface of talc and pyrophyllite as related to tetra-hedral-sheet distortions: Clays & Clay Minerals 38, 522–526.

    Article  Google Scholar 

  • Brown, I. D. and Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides: Acta Cryst. A 29, 266–282.

    Article  Google Scholar 

  • Coker, H. (1983) Elementary methods for the evaluation of electrostatic potentials in ionic crystals: J. Phys. Chem. 87, 2512–2525.

    Article  Google Scholar 

  • Davis, J. A. and Kent, D. B. (1990) Surface complexation modeling in aqueous geochemistry: Rev. Mineral 23, 177–260.

    Google Scholar 

  • Delhalle, J., Fripiat, J. G., and Piela, L. (1980) On the use of Laplace transform to evaluate one-dimensional lattice summations in quantum calculations of model polymers: Int. J. Quantum Chem. Quantum Chem. Symp. 14, 431–442.

    Google Scholar 

  • Eyjen, H. M. (1932) On the stability of certain heteropolar crystals: Phys. Rev. 39, 675–687.

    Article  Google Scholar 

  • Ewald, P. P. (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale: Ann. Phys. (Leipzig) 64, 253–287.

    Article  Google Scholar 

  • Ferris, A. P. and Jepson, W. B. (1975) The exchange capacities of kaolinite and the preparation of homoionic clays: J. Colloid Interface Sci. 51, 245–259.

    Article  Google Scholar 

  • Fripiat, J. G. and Delhalle, J. (1979) Fourier representation of the Coulombic contributions to polymer chains: J. Cornput. Phys. 33, 425–431.

    Article  Google Scholar 

  • Giese, R. F. (1976) Hydroxyl orientations in gibbsite and bayerite: Acta Cryst. B 32, 1719–1723.

    Article  Google Scholar 

  • Giese, R. F. (1979) Hydroxyl orientations in 2:1 phyllosilicates: Clay & Clay Minerals 27, 213–223.

    Article  Google Scholar 

  • Giese, R. F. (1984) Electrostatic energy models of micas: Rev. Mineral 13, 105–144.

    Google Scholar 

  • Glasser, M. L. and Zucker, I. J. (1980) Lattice sums: Theoret. Chem. Adv. Perspect. 5, 67–139.

    Article  Google Scholar 

  • Grim, R. E. and Guven, N. (1978) Bentonites: Geology, Mineralogy, Properties and Uses: Elsevier, Amsterdam, 256 pp.

    Google Scholar 

  • Harris, F.E. (1972) Fourier representation methods for electronic structures of linear polymers: J. Chem. Phys. 56, 4422–4425.

    Article  Google Scholar 

  • Harris, F. E. (1975) Hartree-Fock studies of electronic structures of crystalline solids: Theoret. Chem. Adv. Perspect. 1, 147–218.

    Article  Google Scholar 

  • Hartman, P. (1982) On the growth of dolomite and kaolinite crystals: Neu. Jahr. Mineral. Monat. 1982, 84–92.

    Google Scholar 

  • Hartman, P. and Perdok, W. G. (1955a) On the relations between structure and morphology of crystals. I: Acta Cryst. 8, 49–52.

    Article  Google Scholar 

  • Hartman, P. and Perdok, W. G. (1955b) On the relations between structure and morphology of crystals. II: Acta Cryst. 8, 521–524.

    Article  Google Scholar 

  • Hartman, P. and Perdok, W. G. (1955c) On the relations between structure and morphology of crystals. III: Acta Cryst. 8, 524–529.

    Google Scholar 

  • Hiemstra, T., van Riemsdijk, W. H., and Bolt, G. H. (1989) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach: J. Colloid Interface Sci. 133, 91–104.

    Article  Google Scholar 

  • Leadbetter, A. J., Ward, R. C., Clark, J. W., Tucker, P. A., Matsuo, T., and Suga, H. (1985) The equilibrium low-temperature structure of ice: J. Chem. Phys. 82, 424–428.

    Article  Google Scholar 

  • Lee, J. H. and Guggenheim, S. (1981) Single crystal x-ray refinement of pyrophyllite-1Tc: Am. Mineral. 66, 350–357.

    Google Scholar 

  • Muljadi, D., Posner, A. M., and Quirk, J. P. (1966) The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite: J. Soil Sci. 17, 230–237.

    Article  Google Scholar 

  • O’Keeffe, M. (1989) The prediction and interpretation of bond lengths in crystals: Struct. bonding (Berlin) 71, 161–190.

    Article  Google Scholar 

  • O’Keeffe, M. and Stuart, J. A. (1983) Bond energies in solid oxides: Inorg. Chem. 22, 177–179.

    Article  Google Scholar 

  • Parks, G. A. (1990) Surface energy and adsorption at mineral-water interfaces: An introduction: Rev. Mineral 23, 133–175.

    Google Scholar 

  • Parry, D.E. (1975) The electrostatic potentialin the surface region of an ionic crystal: Surface Sci. 49, 433–440.

    Article  Google Scholar 

  • Pauling, L. (1929) The principles determining the structure of complex ionic crystals: J. Amer. Chem. Soc. 51, 1010–1026.

    Article  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989) Numerical Recipes in Pascal. The Art of Scientific Computing: Cambridge, New York, 759 pp.

    Google Scholar 

  • Quirk, J. P. (1960) Negative and positive adsorption of chloride by kaolinite: Nature 188, 253–254.

    Article  Google Scholar 

  • Russell, J. D., Paterson, E., Fraser, A. R., and Farmer, V. C. (1975) Adsorption of carbon dioxide on goethite (α-FeOOH) surfaces, and its implications for anion adsorption: J. Chem. Soc., Faraday Trans. 1 71, 1623–1630.

    Article  Google Scholar 

  • Schindler, P. W. and Stumm, W. (1987) The surface chemistry oxides, hydroxides and oxide minerals: in Aquatic Surface Chemistry, W. Stumm, ed., Wiley, New York, 83–110.

    Google Scholar 

  • Schofield, R. K. and Samson, H. R. (1953) The deflocculation of kaolinite suspensions and the accompanying change-over from positive to negative chloride adsorption: Clay Mineral Bull. 2, 45–51.

    Article  Google Scholar 

  • Schofield, R. K. and Samson, H. R. (1954) Flocculation of kaolinite due to the attraction of oppositely charged crystal faces: Disc. Faraday Soc, 135–145.

    Google Scholar 

  • Secor, R. B. and Radke, C. J. (1985) Spillover of the diffuse double layer on montmorillonite particles: J. Colloid Interface Set. 103, 237–244.

    Article  Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils: Oxford University Press, New York, 234 pp.

    Google Scholar 

  • Sun, B. N. and Baronnet, A. (1989a) Hydrothermal growth of OH-phlogopite single crystals. I. Undoped growth medium: J. Crystal Growth 96, 265–276.

    Article  Google Scholar 

  • Sun, B. N. and Baronnet, A. (1989b) Hydrothermal growth of OH-phlogopite single crystals. II. Role of Cr and Ti adsorption on crystal growth rater: Chem. Geol. 78, 301–314.

    Article  Google Scholar 

  • Swartzen-Allen, S. L. and Matijevic, E. (1974) Surface and colloid chemistry of clays: Chem. Rev. 74, 385–400.

    Article  Google Scholar 

  • Torrie, G. M. and Valleau, J. P. (1980) Electrical double layers. I. Monte Carlo study of a uniformly charged surface: J. Chem. Phys. 73, 5807–5816.

    Article  Google Scholar 

  • Van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry, 2nd ed.: Wiley, New York.

    Google Scholar 

  • Van Santen, R. A. (1982) Chemical-bonding aspects of heterogeneous catalysis. II. Solid acids: J. Roy. Neth. Chem. Soc. 101, 157–163.

    Google Scholar 

  • White, G. N., and Zelazny, L. (1988) Analysis and implications of the edge structure of dioctahedral phyllosilicates: Clays & Clay Minerals 36, 141–146.

    Article  Google Scholar 

  • Ziolkowski, J. (1986) Crystallochemical model of active sites on oxide catalysis: J. Catal. 100, 45–58.

    Article  Google Scholar 

  • Ziolkowski, J., and Dziembaj, L. (1985) Empirical relationship between individual cation-oxygen bond-length and bond energy in crystals and in molecules: J. Solid State Chem. 57, 291–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleam, W.F., Welhouse, G.J. & Janowiak, M.A. The Surface Coulomb Energy And Proton Coulomb Potentials Of Pyrophyllite {010}, {110}, {100}, and {130} EDGES. Clays Clay Miner. 41, 305–316 (1993). https://doi.org/10.1346/CCMN.1993.0410305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1993.0410305

Key Words

Navigation