Skip to main content
Log in

Molecular Dynamics Simulations of Pyrophyllite Edge Surfaces: Structure, Surface Energies, and Solvent Accessibility

  • Published:
Clays and Clay Minerals

Abstract

Atomistic simulations of 2:1 clay minerals based on parameterized forcefields have been applied successfully to provide a detailed description of the interfacial structure and dynamics of basal planes and interlayers, but have made limited progress in exploring the edge surfaces of these ubiquitous layer-type aluminosilicates. In the present study, molecular dynamics simulations and energy-minimization calculations of the edge surfaces using the fully flexible CLAYFF forcefield are reported. Pyrophyllite provides an ideal prototype for the 2:1 clay-mineral edge surface because it possesses no structural charge, thus rendering the basal planes inert, while crystal-growth theory can be applied to identify two major candidates for the structure of the edge surfaces. Models based on these candidate structures reproduced bulk crystal bond distances accurately when compared to X-ray data and ab initio molecular simulations, and the predicted edge surface bond distances were in agreement with those determined via ab initio simulation. The calculated surface free energy and surface stress led to an accurate prediction of pyrophyllite nanoparticle morphology, while surface excess energies calculated for the edge surfaces were always negative. These results are consistent with the observed pyrophyllite nanoparticle morphology, with the concept of negative interfacial energies, and conditions that may give rise to them including a role in the stabilization of layer-type nanoparticulate minerals. Molecular dynamics simulations of hydrated nanoparticle edge surfaces indicated five reactive surface oxygen sites on the dominant candidate edge, in agreement with a recent model of proton titration data for 2:1 clay minerals. These promising results illustrate the potential for classical mechanical atomistic simulations that explore edge surface phenomena at much greater length- and times-scales than are currently possible with computationally expensive ab initio methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accelrys (2008) Materials Studio. Accelrys Software, Inc., San Diego, California, USA.

    Google Scholar 

  • Adamson, A.W. and Gast, A.P. (1997) Physical Chemistry of Surfaces, 6th edition. Wiley, New York.

    Google Scholar 

  • Allen, M.P. and Tildesley, D.J. (1989) Computer Simulation of Liquids. Clarendon Press, Oxford University Press, Oxford, UK and New York.

    Google Scholar 

  • Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P. (1987) The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269–6271.

    Article  Google Scholar 

  • Bergaya, F., Theng, B.K.G., and Lagaly, G. (2006) Handbook of Clay Science. P. xxi, Elsevier, Amsterdam, 1224 pp.

    Google Scholar 

  • Bickmore, B.R., Bosbach, D., Hochella, M.F., Charlet, L., and Rufe, E. (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86, 411–423.

    Article  Google Scholar 

  • Bickmore, B.R., Rosso, K.M., Nagy, K.L., Cygan, R.T., and Tadanier, C.J. (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity. Clays and Clay Minerals, 51, 359–371.

    Article  Google Scholar 

  • Bleam, W.F. (1993) Atomic theories of phyllosilicates — quantum-chemistry, statistical-mechanics, electrostatic theory, and crystal-chemistry. Reviews of Geophysics, 31, 51–73.

    Article  Google Scholar 

  • Bleam, W.F., Welhouse, G.J., and Janowiak, M.A. (1993) The surface Coulomb energy and proton Coulomb potentials of pyrophyllite (010), (110), (100), and (130) edges. Clays and Clay Minerals, 41, 305–316.

    Article  Google Scholar 

  • Bosbach, D., Charlet, L., Bickmore, B., and Hochella, M.F. (2000) The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy. American Mineralogist, 85, 1209–1216.

    Article  Google Scholar 

  • Bourg, I.C., Sposito, G., and Bourg, A.C.M. (2007) Modeling the acid-base surface chemistry of montmorillonite. Journal of Colloid and Interface Science, 312, 297–310.

    Article  Google Scholar 

  • Churakov, S.V. (2006) Ab initio study of sorption on pyrophyllite: Structure and acidity of the edge sites. Journal of Physical Chemistry B, 110, 4135–4146.

    Article  Google Scholar 

  • Churakov, S.V. (2007) Structure and dynamics of the water films confined between edges of pyrophyllite: A first principle study. Geochimica et Cosmochimica Acta, 71, 1130–1144.

    Article  Google Scholar 

  • Churakov, S.V. and Dähn, R. (2012) Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environmental Science & Technology, 46, 5713–5719.

    Article  Google Scholar 

  • Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255–1266.

    Article  Google Scholar 

  • Dähn, R., Jullien, M., Scheidegger, A.M., Poinssot, C., Baeyens, B., and Bradbury, M.H. (2006) Identification of neoformed Ni-phyllosilicates upon Ni uptake in montmorillonite: A transmission electron microscopy and extended X-ray absorption fine structure study. Clays and Clay Minerals, 54, 209–219.

    Article  Google Scholar 

  • Dähn, R., Baeyens, B., and Bradbury, M.H. (2011) Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS — the strong/weak site concept in the 2SPNE SC/CE sorption model. Geochimica et Cosmochimica Acta, 75, 5154–5168.

    Article  Google Scholar 

  • de Leeuw, N.H. (2008) Computer simulations of surfaces and interfaces: A case study of the hydration and dissolution of αquartz SiO2. Pp. 66–102 in: (M. Prieto and and C. Brime, editors ) Computer Methods in Mineralogy and Geochemistry, 4, Sociedad Española de Mineralogía, Madrid.

    Google Scholar 

  • Elzinga, E.J. and Sparks, D.L. (1999) Nickel sorption mechanisms in a pyrophyllite—montmorillonite mixture. Journal of Colloid and Interface Science, 213, 506–512.

    Article  Google Scholar 

  • Enderby, J.E. and Neilson, G.W. (1981) The structure of electrolyte-solutions.Reports on Progress in Physics, 44, 593–653.

    Article  Google Scholar 

  • Ferrage, E., Martin, F., Petit, S., Pejo-Soucaille, S., Micoud, P., Fourty, G., Ferret, J., Salvi, S., de Parseval, P., and Fortune, J.P. (2003) Evaluation of talc morphology using FTIR and H/D substitution. Clay Minerals, 38, 141–150.

    Article  Google Scholar 

  • Gibbs, J.W. (1931) The Collected Works of J. Willard Gibbs: Thermodynamics. Longmans, UK.

    Google Scholar 

  • Greenberg, S.A. (1957) Thermodynamic functions for the solution of silica in water. Journal of Physical Chemistry, 61, 196–197.

    Article  Google Scholar 

  • Gren, W., Parker, S.C., Slater, B., and Lewis, D.W. (2010) Structure of zeolite A (LTA) surfaces and the zeolite A/water interface. The Journal of Physical Chemistry C, 114, 9739–9747.

    Article  Google Scholar 

  • Hartman, P. (1973) Crystal Growth: An Introduction. North-Holland Publishing Company, American Elsevier, Amsterdam, New York, 531 pp.

    Google Scholar 

  • Hedstrom, M. and Karnland, O. (2012) Donnan equilibrium in Na-montmorillonite from a molecular dynamics perspective. Geochimica et Cosmochimica Acta, 77, 266–274.

    Article  Google Scholar 

  • Karasawa, N. and Goddard, W.A. (1989) Acceleration of convergence for lattice sums. Journal of Physical Chemistry, 93, 7320–7327.

    Article  Google Scholar 

  • Kremleva, A., Martorell, B., Kruger, S., and Rosch, N. (2012) Uranyl adsorption on solvated edge surfaces of pyrophyllite: A DFT model study. Physical Chemistry Chemical Physics, 14, 5815–5823.

    Article  Google Scholar 

  • Lal, R. (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  Google Scholar 

  • Lee, J.H. and Guggenheim, S. (1981) Single-crystal X-ray refinement of pyrophyllite-1Tc. American Mineralogist, 66, 350–357.

    Google Scholar 

  • Lin, Z., Gilbert, B., Liu, Q.L., Ren, G.Q., and Huang, F. (2006) A thermodynamically stable nanophase material. Journal of the American Chemical Society, 128, 6126–6131.

    Article  Google Scholar 

  • Liu, X., Lu, X., Meijer, E.J., Wang, R., and Zhou, H. (2012) Atomic-scale structures of interfaces between phyllosilicate edges and water. Geochimica et Cosmochimica Acta, 81, 56–68.

    Article  Google Scholar 

  • Liu, X., Lu, X., Sprik, M., Cheng, J., Meijer, E.J., and Wang, R. (2013) Acidity of edge surface sites of montmorillonite and kaolinite. Geochimica et Cosmochimica Acta, 117, 180–190.

    Article  Google Scholar 

  • Liu, X.D., Cheng, J., Sprik, M., Lu, X.C., and Wang, R.C. (2014) Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations. Geochimica et Cosmochimica Acta, 140, 410–417.

    Article  Google Scholar 

  • Łodziana, Z., Topsoe, N.Y., and Norskov, J.K. (2004) A negative surface energy for alumina. Nature Materials, 3, 289–293.

    Article  Google Scholar 

  • Lopez-Lemus, J., Chapela, G.A., and Alejandre, J. (2008) Effect of flexibility on surface tension and coexisting densities of water. Journal of Chemical Physics, 128, 174703.

    Article  Google Scholar 

  • Martins, D.M.S., Molinari, M., Gonçalves, M.A., Mirão, J.P., and Parker, S.C. (2014) Toward modeling clay mineral nanoparticles: The edge surfaces of pyrophyllite and their interaction with water. The Journal of Physical Chemistry C, 118, 27308–27317.

    Article  Google Scholar 

  • Mathur, A., Sharma, P., and Cammarata, R.C. (2005) Negative surface energy — clearing up confusion. Nature Materials, 4, 186–186.

    Article  Google Scholar 

  • Morton, J.D., Semrau, J.D., and Hayes, K.F. (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochimica et Cosmochimica Acta, 65, 2709–2722.

    Article  Google Scholar 

  • Overbeek, J.T.G. (1978) Microemulsions, a field at the border between lyophobic and lyophilic colloids. Faraday Discussions, 65, 7–19.

    Article  Google Scholar 

  • Ramberg, H. (1954) A theoretical approach to the thermal stabilities of hydrous minerals. 1. General principles as revealed by studies of hydroxides and oxyacids. Journal of Geology, 62, 388–398.

    Article  Google Scholar 

  • Ramos-Tejada, M.M., Arroyo, F.J., Perea, R., and Duran, J.D.G. (2001) Scaling behavior of the rheological properties of montmorillonite suspensions: Correlation between interparticle interaction and degree of flocculation. Journal of Colloid and Interface Science, 235, 251–259.

    Article  Google Scholar 

  • Rand, B., Pekenc, E., Goodwin, J.W., and Smith, R.W. (1980) Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. Journal of the Chemical Society-Faraday Transactions I, 76, 225–235.

    Article  Google Scholar 

  • Refson, K., Park, S.H., and Sposito, G. (2003) Ab initio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc. Journal of Physical Chemistry B, 107, 13376–13383.

    Article  Google Scholar 

  • Roosen, A.R., McCormack, R.P., and Carter, W.C. (1998) Wulffman: A tool for the calculation and display of crystal shapes. Computational Materials Science, 11, 16–26.

    Article  Google Scholar 

  • Rotenberg, B., Marry, V., Vuilleumier, R., Malikova, N., Simon, C., and Turq, P. (2007) Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics. Geochimica et Cosmochimica Acta, 71, 5089–5101.

    Article  Google Scholar 

  • Russell, J.D., Farmer, V.C., and Velde, B. (1970) Replacement of OH by OD in layer silicates, and identification of vibrations of these groups in infra-red spectra. Mineralogical Magazine, 37, 869–879.

    Article  Google Scholar 

  • Sposito, G. (2008) The Chemistry of Soils, 2nd edition. Oxford University Press, Oxford, UK, and New York.

    Google Scholar 

  • Sposito, G., Park, S.H., and Sutton, R. (1999) Monte Carlo simulation of the total radial distribution function for interlayer water in sodium and potassium montmorillonites. Clays and Clay Minerals, 47, 192–200.

    Article  Google Scholar 

  • Stevenson, F.J. (1994) Humus Chemistry: Genesis, Composition, Reactions. 2nd edition. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Stol, R.J. and DeBruyn, P.L. (1980) Thermodynamic stabilization of colloids. Journal of Colloid and Interface Science, 75, 185–198.

    Article  Google Scholar 

  • Tazi, S., Rotenberg, B., Salanne, M., Sprik, M., and Sulpizi, M. (2012) Absolute acidity of clay edge sites from ab-initio simulations. Geochimica et Cosmochimica Acta, 94, 1–11.

    Article  Google Scholar 

  • Tombacz, E. and Szekeres, M. (2004) Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75–94.

    Article  Google Scholar 

  • Tournassat, C., Ferrage, E., Poinsignon, C., and Charlet, L. (2004) The titration of clay minerals: II. Structure-based model and implications for clay reactivity. Journal of Colloid and Interface Science, 273, 234–246.

    Article  Google Scholar 

  • Wan, J., Tyliszczak, T., and Tokunaga, T.K. (2007) Organic carbon distribution, speciation, and elemental correlations within soil micro aggregates: Applications of STXM and NEXAFS spectroscopy. Geochimica et Cosmochimica Acta, 71, 5439–5449.

    Article  Google Scholar 

  • White, G.N. and Zelazny, L.W. (1988) Analysis and implications of the edge structure of dioctahedral phyllosilicates. Clays and Clay Minerals, 36, 141–146.

    Article  Google Scholar 

  • Wulff, G. (1901) On the question of speed of growth and dissolution of crystal surfaces. Zeitschrift für Kristallographie und Mineralogie, 34, 449–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aric G. Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newton, A.G., Sposito, G. Molecular Dynamics Simulations of Pyrophyllite Edge Surfaces: Structure, Surface Energies, and Solvent Accessibility. Clays Clay Miner. 63, 277–289 (2015). https://doi.org/10.1346/CCMN.2015.0630403

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630403

Key Words

Navigation