Skip to main content
Log in

FTIR Study of Deuterated Montmorillonites: Structural Features Relevant to Pillared Clay Stability

  • Published:
Clays and Clay Minerals

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

FTIR studies of six partially-deuterated montmorillonites (MS) reveal the presence of two O-D stretching bands, one between 2702–2728 cm-1 and another near 2680 cm-1. For homoionic (Li, Na, Mg, Ca, or La) Wyoming-type MS, the position of the higher frequency band, designated as (O-D)h, is between 2714–2728 cm-1, whereas for homoionic Cheto-type MS it is between 2702–2706 cm-1. The lower frequency band, designated as (O-D)1, is in the narrow range of 2674–2684 cm-1. Resolution of two corresponding O-H bands, appearing near 3670 and 3635 cm-1, was observed only after partial dehydroxylation of the smectites. The changes in the relative intensities of the two O-D stretching bands as a function of the smectite type and of the Lewis acidity (charge density) of the exchangeable ion were determined. For Wyoming-type MS, the intensity of the (O-D)h band is much lower than that of the (O-D)l band, whereas for Cheto-type MS, the intensity of the (O-D)h band is about equal or slightly higher than that of the (O-D)l band. The observed resolution can be ascribed tentatively to the presence of (at least) two types of octahedral OH groups in the smectites, the (O-D)h band being assigned to AlMgOH and the (O-D)1 band to AlAlOH groups. Pillaring of Cheto-type MS with hydroxy-Al13 oligocations resulted in products showing much higher thermal stability between 400–600°C compared to that of identically pillared Wyoming-type MS. Compositional and other factors, e.g., CEC values and mode of pillaring, may cause this difference in stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cabot Corporation (1987) Cab-O-Sil Fumed Silica: Properties and Functions: Cab-O-Sil Division Bull., p. 8–9.

    Google Scholar 

  • Deuel, H., Huber, G., and Iberg, R. (1950) Organische Derivate von Tonmineralien: Helv. Chim. Acta 33, 1229–1232.

    Article  Google Scholar 

  • Edelman, C. H. and Favejee, J. Ch. L. (1940) On the crystal structure of montmorillonite and halloysite: Z. Kristallogr. 102, 417–431.

    Google Scholar 

  • Farmer, V. C. (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals: H. Van Olphen and J. J. Fripiat, eds., Pergamon Press, 285–337.

  • Faucher, J. A. and Thomas, H. C. (1955) Exchange between heavy water and clay minerals: J. Phys. Chem. 59, 189–191.

    Article  Google Scholar 

  • Fripiat, J. J. (1988) High resolution solid state NMR study of pillared clays: Catalysis Today 2, 281–295.

    Article  Google Scholar 

  • Goodman, B. A. and Stucki, J. W. (1984) The use of nuclear magnetic resonance for the determination of tetrahedral aluminum in montmorillonite: Clay Miner. 19, 663–667.

    Article  Google Scholar 

  • Grim, R. E. (1968) Clay Mineralogy: 2nd ed. McGraw-Hill, New York, p. 315.

    Google Scholar 

  • Grim, R. E. and Kulbicki, G. (1961) Montmorillonite: High temperature reactions and classification: A mer. Mineral. 46, 1329–1369.

    Google Scholar 

  • Gruner, J. W. (1934) The crystal structure of talc and pyrophyllite: Z. Kristallogr. 88, 412–419.

    Google Scholar 

  • Güven, N. (1974) Electron-optical investigations on mont-morillonites. 1. Cheto, Camp Berteaux and Wyoming Montmorillonites: Clays & Clay Minerals 22, 155–165.

    Article  Google Scholar 

  • Hayashi, H. (1963) Montmorillonites from some bentonite deposits in Yamagata Prefecture, Japan: Clay Sci. 1(6), 176–182.

    Google Scholar 

  • Hofmann, U., Endell, K., and Wilm, D. (1933) Kristall-struktur und Quellung von Montmorillonit: Z. Kristallogr. 86, 340–348.

    Google Scholar 

  • Jonas, E. C. (1955) The reversible dehydroxylation of clay minerals: Proc. Third Natl. Clay Confer., U.S. Natl. Acad. Sci., Publ. 395, 66–72.

    Google Scholar 

  • Komarneni, S., Fyfe, C. A., Kennedy, G. J., and Strobl, H. (1986) Characterization of synthetic and naturally occurring clays by “Al and 29Si magic angle spinning NMR spectroscopy: J. Amer. Ceram. Soc. 69(3), c45–c47.

    Google Scholar 

  • Lahav, N., Shani, U., and Shabtai, J. (1978) Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum montmorillonite: Clays & Clay Minerals 26, 107–115.

    Article  Google Scholar 

  • Landgraf, K. F. (1979a) Distinction between Cheto and Wyoming type of montmorillonites by the effect of organic interlayers on the optical refraction: Chem. Erde 38, 97–104.

    Google Scholar 

  • Landgraf, K. F. (1979b) Distinction between Cheto and Wy-oming type of montmorillonites by the relative X-ray in-tensities of the (001) series of the glycol complexes: Chem. Erde 38, 233–244.

    Google Scholar 

  • Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., and Grimmer, A. R. (1980) Structural studies of silicates by solid-state high resolution 29Si NMR: J. Amer. Chem. Soc. 102, 4889–4893.

    Article  Google Scholar 

  • Magdefrau, E. and Hofmann, U. (1937) Die Kristallstruktur des Montmorillonits: Z. Kristallogr. 98, 299–323.

    Google Scholar 

  • Matsumoto, M., Suzuki, M., Takahashi, H., and Saito, Y. (1986) Solid-state NMR studies on pillar-interlayered naturally-occurring montmorillonite: Bull. Chem. Soc. Japan 89(1), 303–304.

    Article  Google Scholar 

  • McConnell, D. (1950) The crystal chemistry of montmo-rillonite: Amer. Mineral. 35, 166–172.

    Google Scholar 

  • Michaelian, K. H., Bukka, K., and Permann, D. N. S. (1987) Photoacoustic infrared spectra (250-10, 000 cm1) of partially deuterated kaolinite #9: Can. J. Chem. 65, 1420–1423.

    Article  Google Scholar 

  • Muller, D., Gessner, W., Behrens, H. J., and Scheller, G. (1981) Determination of the aluminum coordination in aluminium-oxygen compounds by solid-state high resolution 27Al NMR: Chem. Phys. Lett. 79, 59–62.

    Article  Google Scholar 

  • Pinnavaia, T. J., Landau, S. D., Tzou, M. S., Johnson, I. D., and Lipsicas, M. (1985) Layer cross-linking in pillared clays: J. Amer. Chem. Soc. 107, 7222–7224.

    Article  Google Scholar 

  • Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J. (1985) High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays: J. Amer. Chem. Soc. 107, 2362–2369.

    Article  Google Scholar 

  • Plee, D., Gatineau, L., and Fripiat, J. J. (1987) Pillaring processes of smectites with and without tetrahedral substitution: Clays & Clay Minerals 35(2), 81–88.

    Article  Google Scholar 

  • Qin, G., Zheng, L., Xie, Y., and Wu, C. (1985) On the framework hydroxyl groups of H-ZSM-5 zeolites: J. Catal. 95, 609–612.

    Article  Google Scholar 

  • Roy, D. M. and Roy, R. (1957) Hydrogen-deuterium ex-change in clays and problems in the assignment of infrared frequencies in the hydroxyl region: Geochim. et Cos-mochim. Acta 11, 72–85.

    Article  Google Scholar 

  • Russell, J. D. and Fraser, A. R. (1971) I. R. spectroscopic evidence for interaction between hydronium ions and lattice OH groups in montmorillonite: Clays & Clay Minerals 19, 55–59.

    Article  Google Scholar 

  • Sanz, J. and Serratosa, J. M. (1984) 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates: J. Amer. Chem. Soc. 106, 4790–4793.

    Article  Google Scholar 

  • Schomburg, J. (1976) Dilatometrical investigations of dioc-tahedral smectites: Chem. Erde 35, 192–198.62.

    Google Scholar 

  • Schutz, A., Stone, W. E. E., Poncelet, G., and Fripiat, J. J. (1987) Preparation and characterization of bidimensional zeolitic structure obtained from synthetic beidellite and hy-droxy-aluminum solutions: Clays & Clay Minerals 35(4), 251–261.

    Article  Google Scholar 

  • Solomon, D. H. and Hawthorne, D. G. (1983) Chemistry of Pigments and Fillers: John Wiley, New York, Chapter 1, 14–17.

    Google Scholar 

  • Sterte, J. and Shabtai, J. (1987) Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites: Clays & Clay Minerals 35(6), 429–439.

    Article  Google Scholar 

  • Tennakoon, D. T., Jones, W., and Thomas, J. M. (1986) Structural aspects of metaloxide-pillared sheet silicates: J. Chem. Soc. Faraday Trans. 82, 3081–3095.

    Article  Google Scholar 

  • Tokarz, M. and Shabtai, J. (1985) Cross-linked smectites. IV. Preparation and properties of hydroxyaluminum-pil-lared Ce- and La-montmorillonites and fluorinated NH4+-montmorillonites: Clays & Clay Minerals 33(2), 89–98.

    Article  Google Scholar 

  • Van der Marel, H. W. and Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and Their Ad-mixtures: Elsevier, Amsterdam.

    Google Scholar 

  • Weiss, C. A., Altaner, S. P., and Kirkpatrick, R. J. (1987) High resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations: A mer. Mineral. 72, 935–942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukka, K., Miller, J.D. & Shabtai, J. FTIR Study of Deuterated Montmorillonites: Structural Features Relevant to Pillared Clay Stability. Clays Clay Miner. 40, 92–102 (1992). https://doi.org/10.1346/CCMN.1992.0400110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1992.0400110

Key Words

Navigation