Skip to main content
Log in

Transformation of Akaganéite Into Goethite and Hematite in Alkaline Media

  • Published:
Clays and Clay Minerals

Abstract

The conversion of akaganéite to goethite and/or hematite in alkaline media has been followed by X-ray powder diffraction and transmission electron microscopy (TEM). The rate of transformation fell and the amount of hematite in the product increased as the [OH] decreased to < 1 M. Kinetic studies and TEM indicated that the transformation involved dissolution of akaganéite followed by reprecipitation of goethite and/or hematite. The rate-determining step was the dissolution of akaganéite.

Silicate species retarded the formation of goethite + hematite principally by inhibiting dissolution of akaganéite; to a lesser extent, they interfered with the nucleation of goethite. Silicate modified the morphology of goethite, but not hematite.

Comparison of the transformation behavior of akaganéite with that previously observed for ferrihydrite indicated that the composition of the reaction product depended strongly on the transformation conditions, i.e., pH and the presence of foreign species. The nature of the solid precursor was important insofar as its degree of crystallinity governed the dissolution kinetics and its surface properties influenced interaction with any foreign species in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R. J., Posner, A. M., and Quirk, J. P. (1977) Crystal nucleation and growth in hydrolyzing iron(III) chloride solutions: Clays & Clay Minerals 25, 49–56.

    Article  Google Scholar 

  • Blesa, M. A., Mijalchik, M., and Villegas, M. (1986) Transformation of akaganéite into magnetite in aqueous hydrazine suspensions: Reactivity of Solids 2, 85–94.

    Article  Google Scholar 

  • Brauer, G. (1954) Handbuch der Präparativen Anorganischen Chemie: Ferdinand Enke, Stuttgart, p. 1020.

    Google Scholar 

  • Brown, W. E. B., Dollimore, D., and Galway, A. K. (1980) Theory of solid state reaction kinetics: in Comprehensive Chemical Kinetics, C. H. Bamford and C. H. F. Tipper, eds., Elsevier, Amsterdam, 41–109.

    Google Scholar 

  • Carlson, L. and Schwertmann, U. (1981) Natural ferrihy-drites in surface deposits from Finland and their association with silica: Geochim. Cosmochim. Acta 45, 421–429.

    Article  Google Scholar 

  • Cornell, R. M. and Giovanoli, R. (1985) Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite: Clays & Clay Minerals 33, 424–432.

    Article  Google Scholar 

  • Cornell, R. M. and Giovanoli, R. (1987) The influence of silicate species on the morphology of goethite (a-FeOOH) grown from ferrihydrite (5Fe2O3-9H2O): J. Chem. Soc. Chem. Commun., 413–414.

    Google Scholar 

  • Cornell, R. M. and Giovanoli, R. (1988) Acid dissolution of akaganéite and lepidocrocite: The effect on crystal morphology: Clays & Clay Minerals 36, 385–390.

    Article  Google Scholar 

  • Cornell, R. M., Giovanoli, R., and Schindler, P. W. (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media: Clays & Clay Minerals 35, 21–28.

    Article  Google Scholar 

  • Cornell, R. M., Giovanoli, R., and Schneider, W. (1989) Review of the hydrolysis of iron(III) and the crystallization of amorphous iron(III) hydroxide hydrate: J. Chem. Tech. Biotechnol. 46, 115–134.

    Article  Google Scholar 

  • Feitknecht, W. and Michaelis, W. (1962) Über die Hydrolyse von Eisen(III)-Perchlorat-Lösungen: Helv. Chim. Acta 45, 212–224.

    Article  Google Scholar 

  • Hamada, S. and Matijevic, E. (1982) Formation of mono-dispersed colloidal cubic hematite particles in ethanol + water solutions: J. Chem. Soc. Farad. Trans. I. 78, 2147–2156.

    Article  Google Scholar 

  • Hixon, A. W. and Crowell, J. H. (1931) Dependence of reaction velocity upon surface agitation: Ind. Eng. Chem. 23, 923–981.

    Article  Google Scholar 

  • Lewis, D. G. and Farmer, V. C. (1986) Infrared adsorption of surface OH groups and lattice vibrations in lepidocrocite and boehmite: Clay Miner. 21, 93–100.

    Article  Google Scholar 

  • Patterson, E. and Tait, J. M. (1977) Nitrogen adsorption on synthetic akaganéite and its structural implications: Clay Miner. 12, 345–350.

    Article  Google Scholar 

  • Santschi, P. H. and Schindler, P. W. (1974) Complex formation in the ternary systems Ca2+-H4SiO4-H2O and Mg2+-H4SiO4-H2O: J. Chem. Soc. Dalton, 181–184.

    Google Scholar 

  • Schwertmann, U. and Fischer, W. R. (1966) Zur Bildung von a-FeOOH and a-Fe2O3 aus amorphem Ei-sen(III)hydroxid: Z. Anorg. Allg. Chem. 346, 137–142.

    Article  Google Scholar 

  • Schwertmann, U. and Murad, E. (1983) The effect of pH on the formation of goethite and hematite from ferrihydrite: Clays & Clay Minerals 31, 277–284.

    Article  Google Scholar 

  • Schwertmann, U. and Taylor, R. M. (1972a) The transformation of lepidocrocite to goethite: Clays & Clay Minerals 20, 151–158.

    Article  Google Scholar 

  • Schwertmann, U. and Taylor, R. M. (1972b) The influence of silicate on the transformation of lepidocrocite to goethite: Clays & Clay Minerals 20, 159–164.

    Article  Google Scholar 

  • Vogel, A. I. (1961) A Textbook of Quantitative Inorganic Analysis: 3rd ed., Longmans, London, p. 809.

    Google Scholar 

  • Winter, G. (1979) Anorganische Pigmente: Disperse Festkörper mit technische verwertbaren optische und magnetische Eigenschaften: Fortschr. Miner. 57, 172–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornell, R.M., Giovanoli, R. Transformation of Akaganéite Into Goethite and Hematite in Alkaline Media. Clays Clay Miner. 38, 469–476 (1990). https://doi.org/10.1346/CCMN.1990.0380502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1990.0380502

Key Words

Navigation