Skip to main content
Log in

Analytical Electron Microscopy and the Problem of Potassium Diffusion

  • Published:
Clays and Clay Minerals

Abstract

Diffusion of K during analytical electron microscopy (AEM) results in anomalously low count rates for this element. As the analysis area and specimen thickness decrease, count rates become disproportionally lower. Adularia and muscovite show different diffusion profiles during AEM; for muscovite a strong dependence of diffusion on crystallographic orientation has been observed. Conditions giving rise to reliable chemical data by AEM are the use of a wide scanning area (>800 × 800 Å) and/or large beam size to reduce the effect of diffusion of alkali elements, a specimen thickness greater than about 1000 Å, constant instrument operating conditions, and the use of a homogeneous, well-characterized standard sample. The optimum thickness range was obtained by determining the element intensity ratio vs. thickness curve for given operating conditions. The standard and unknown should have a similar crystal structure and, especially for strongly anisotropic minerals such as phyllosilicates, a similar crystallographic orientation with respect to the electron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. H. and Peacor, D. R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite tran-sition: Clays & Clay Minerals 34, 165–179.

    Article  Google Scholar 

  • Ahn, J. H., Peacor, D. R., and Essene, E. J. (1986) Cation-diffusion-induced characteristic beam damage in transmission electron microscope images of micas: Ultramicroscopy 19, 375–382.

    Article  Google Scholar 

  • Allard, L. F. and Blake, D. F. (1982) The practice of modifying an analytical electron microscope to produce clean X-ray spectra: in Microbeam Analysis—1982, K. F. J. Heinrich, ed., San Francisco Press, San Francisco, 8–19.

    Google Scholar 

  • Blake, D. F., Allard, L. F., Peacor, D. R., and Bigelow, W. C. (1980) “Ultraclean” X-ray spectra in the JEOL JEM-100CX: in Proc. 38th Ann. Meeting, Electron Microsc. Soc. Amer., San Francisco, 1980, G. W. Bailey, ed., Claitor’s Publishing Division, Baton Rouge, Louisiana, 136–137.

    Google Scholar 

  • Cliff, G. and Lorimer, G. W. (1975) The quantitative analysis of thin specimens: J. Microsc. 103, 203–207.

    Article  Google Scholar 

  • Craw, D. (1981) Oxidation and microprobe-induced potassium mobility in iron-bearing phyllosilicates from the Ota-go schists, New Zealand: Lithos 14, 49–57.

    Article  Google Scholar 

  • Goldstein, J. L., Costley, J. L., Lorimer, G. W., and Reed, S. J. B. (1977) Quantitative X-ray analysis in the electron microscope: in SEM 1977, O. Johari, ed., IIT Research Inst., Chicago, 315–324.

    Google Scholar 

  • Isaacs, A. M., Brown, P. E., Valley, J. W., Essene, E. J., and Peacor, D. R. (1981) An analytical electron microscopy study of a pyroxene-amphibole intergrowth: Contrib. Mineral. Petrol. 77, 115–120.

    Article  Google Scholar 

  • Knipe, R. J. (1979) Chemical analysis during slaty cleavage development: Bull. Mineral. 102, 206–210.

    Google Scholar 

  • Lee, J. H., Peacor, D. R., Lewis, D. D., and Wintsch, R. P. (1986) Evidence for syntectonic crystallization for the mudstone-to-slate transition at Lehigh Gap, Pennsylvania, U.S.A.: J. Struct. Geol. 8, 767–780.

    Article  Google Scholar 

  • Lorimer, G. W. (1987) Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope: A review: Mineral. Mag. 51, 49–60.

    Article  Google Scholar 

  • Lorimer, G. W. and Cliff, G. (1976) Analytical electron microscopy of minerals: in Electron Microscopy in Mineralogy, H.-R. Wenk, ed., Springer-Verlag, Berlin, 506–519.

    Chapter  Google Scholar 

  • Veblen, D. R. and Buseck, P. R. (1980) Microstructure and reaction mechanism in biopyriboles: Amer. Mineral. 65, 599–623.

    Google Scholar 

  • White, S. H. and Johnston, D. C. (1981) A microstructural and microchemical study of cleavage lamellae in a slate: J. Struct. Geol. 3, 279–290.

    Article  Google Scholar 

  • White, S. H. and Knipe, R. J. (1978) Microstructure and cleavage development in selected slates: Contrib. Mineral. Petrol. 66, 165–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Pluijm, B.A., Lee, J.H. & Peacor, D.R. Analytical Electron Microscopy and the Problem of Potassium Diffusion. Clays Clay Miner. 36, 498–504 (1988). https://doi.org/10.1346/CCMN.1988.0360603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1988.0360603

Key Words

Navigation