Skip to main content

Electron Probe Micro-Analyzer: An Equipment for Accurate and Precise Micro-Composition Analysis

  • Chapter
  • First Online:
Electron Microscopy in Science and Engineering

Part of the book series: IITK Directions ((IITKD,volume 6))

  • 791 Accesses

Abstract

The concept of electron probe micro-analyzer (EPMA) was conceived by Raymond Castaing in the late 1940s, and till today, EPMA remains the most accurate and precise tool for micro-composition analysis in materials, minerals, and geological samples. The purpose of this article is to give a brief introduction to EPMA as applicable for quantitative analysis of composition of a material. The article covers the history, working principles, and basic construction of EPMA in very brief and describes in some details the methodology of quantitative analysis carried out in wavelength dispersive spectroscopy mode by using standards. Various methods used for correcting the raw X-ray intensity data obtained from the spectrometers are explained including ZAF, Phi-Rho-Z, and calibration curve method. In order to illustrate the applications of EPMA in various fields, several case studies are presented in which EPMA was used as a major tool of microanalysis. The case studies cover range of materials including steels, titanium alloys, high-entropy alloys, nickel-based superalloys, and geological materials and minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar K, Khan SA, Khan SB, Asiri AM (2018) Scanning electron microscopy: principle and applications in nanomaterials characterization. In: Sharma SK (ed) Handbook of materials characterization. Springer International Publishing AG, pp 113–146

    Google Scholar 

  • Berger MJ, Seltzer SM (1964) Tables for energy losses and ranges for electrons and positrons. Natl Acad Sci Natl Res Counc Publ 1133:205–268

    Google Scholar 

  • Bishop HE (1967) Optique des Rayons X et Microanalysis. Hermann, Paris

    Google Scholar 

  • Bloch F (1933) Bremsvermogen von Atomen mit mehreren Elektronen. Zeitsehrift Fiir Physik. 81:363–376

    Article  Google Scholar 

  • Brown JD, Packwood RH (1982) Quantitative electron probe microanalysis using Gaussian curves. X-Ray Spectrom 11(4):187–193

    Google Scholar 

  • Caistaing R, Guinier A (1953) Point-by-point chemical analysis by X-ray spectroscopy: electronic microanalyzer. Anal Chem 25(5):724–726

    Google Scholar 

  • Castaing R (1952) Application des sondes electroniques a une methode d’analyse ponctuelle. Office National d’Estudes et Recherches Aeronautiques, paris, France

    Google Scholar 

  • Chandra J, Paul D, Viladkar SG, Sensarma S (2018) Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province. Geological Society, London, Special Publications, Geological Society of London vol 463. pp 137–169

    Google Scholar 

  • Chauhan GPS, Kulkarni KN (2021) Investigations of ternary interdiffusion in β (BCC) phase field of Ti-Al-Mo system. Metall Mater Trans A 52A:413–425

    Google Scholar 

  • Cosslet VE (1949) Conference on electron microscopy. Nature 164:481–483

    Google Scholar 

  • Dangi B, Brown TW, Kulkarni KN (2018) Effect of silicon, manganese and nickel present in iron on the intermetallic growth at iron-aluminum alloy interface. J Alloys Compd 769:777–787

    Google Scholar 

  • Day KM, Dayananda MA, Ram-Mohan LR (2005) Determination and assessment of ternary interdiffusion coefficients from individual diffusion couples. J Phase Equilib Diffus 26:579–590

    Article  Google Scholar 

  • Divinski SV, Pokoev AV, Esakkiraja N, Paul A (2018) A mystery of sluggish diffusion in high-entropy alloys: the truth or a myth. In: Mehrer H (ed) Diffusion foundations, vol 17. pp 69–104

    Google Scholar 

  • Duncumb P, Reed SJB (1968) The calculation of stopping power and backscatter effects in electron probe microanalysis. In: Heinrich KFJ (ed) Quantitative electron probe microanalysis, vol 298. NBS Special Publication, pp 133–154

    Google Scholar 

  • Guillemet A (1989) Assessing the thermodynamics of the Fe-Co-Ni system using a CALPHAD predictive technique. CALPHAD; 13(1):1–22

    Article  Google Scholar 

  • Gupta KP (1990) The Cu-Fe-Ni (Copper-Iron-Nickel) system. In: Phase diagrams of ternary nickel alloys, Part 1. Indian Institute of Metals, Kolkata, pp 290–315

    Google Scholar 

  • Harmer RE, Nex PAM (2016) Rare earth deposits of Africa. Episodes 39:381–406

    Article  Google Scholar 

  • Heinrich KFJ, Yakowitz H (1975) Absorption of primary X Rays in electron probe microanalysis. Anal Chem 47(14):2408–2411

    Google Scholar 

  • Henrich KF (1991) Strategies of electron probe data reduction. In: Henrich KFJ, Newbury DE (eds) Electron probe quantitation. Springer Science+Business Media, New York, pp 9–18

    Google Scholar 

  • Hillier J, Baker RF (1944) Microanalysis by means of electrons. J Appl Phys 15:663–675

    Article  Google Scholar 

  • Jennings J, Gould J (2008) A new road for automotive architectures. Welding J 87(10):26–30

    Google Scholar 

  • Jiangqi L,Fengchong L, Jiqing C (2008) New technology of lightweight and steel-aluminum hybrid structure car body. Chin J Mech Eng 6:6

    Google Scholar 

  • JEOL User Manual for JXA-8230

    Google Scholar 

  • Kirkaldy JS, Lane JE, Mason GR (1963) Diffusion in multicomponent metallic systems: VII solutions of the multicomponent diffusion equations with variable coefficients. Can J Phy 41(12):2174–2186

    Google Scholar 

  • Krishna AB, Kulkarni KN (2018) Experimental determination of quaternary isotherm of Fe-Ni-Co-Cu at 950 °C by diffusion couple technique. Materialia 4:549–552

    Google Scholar 

  • Love G, Cox MG, Scott VD (1978) A versatile number correction for electron-probe microanalysis. J Phys D Appl Phys 11:7–21

    Article  Google Scholar 

  • Takahashi MM, Bhadeshia HKDH (1990) Model for transition from upper to lower bainite, Mater Sci Technol 6:592

    Google Scholar 

  • Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  Google Scholar 

  • Morral JE (2018) Body-diagonal diffusion couples for high entropy alloys. J Phase Equilib Diffus 39:51–56

    Article  Google Scholar 

  • Packwood RH, Brown JD (1981) A Gaussian expression to describe curves for quantitative electron probe microanalysis. X-Ray Spectrom 10(3):138–146

    Google Scholar 

  • Philibert J (1963) A method of calculating the absorption correction in electron probe microanalysis. In: Pattee HH, Cosslett VE, Engstrom A (eds) X-ray optics and X-ray microanalysis. Academic Press, New York, pp 379–392

    Google Scholar 

  • Philibert J, Tixier R (1968) Some problems with quantitative electron probe microanalysis. In: Heinrich KFJ (ed) Quantitative electron probe microanalysis. NBS Special Publication 298, National Bureau of Standards, Washington, DC, pp 13–34

    Google Scholar 

  • Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22(2):361–374

    Google Scholar 

  • Private communication with JEOL EPMA experts (2019)

    Google Scholar 

  • Reed SJB (1965) Characteristic fluorescence corrections in electron-probe microanalysis. Br J Appl Phys 16

    Google Scholar 

  • Reed SJB (2005) Electron microprobe analysis and scanning electron microscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rinaldi R, Llovet X (2015) Electron probe microanalysis: a review of the past, present, and future. Microsc Microanal 21(5):1053–1069

    Article  Google Scholar 

  • Sachdev AK, Kulkarni K, Fang ZZ, Yang R, Girshov V (2012) Titanium for automotive applications: challenges and opportunities in materials and processing. JOM 64:553–565

    Google Scholar 

  • Schafrik R, Sprague R (2004) Saga of gas turbine materials part II. Adv Mater Process 162(4):27–30

    Google Scholar 

  • Simandl GJ (2015) Carbonatites and related exploration targets. In: Simandl GJ, Neetz M (eds) Symposium on Strategic and Critical Materials Proceedings 13–14 November 2015; Victoria, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper, vol 3. pp 31–37

    Google Scholar 

  • Tripathi S, Verma V, Brown TW, Kulkarni KN (2017) Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys. J Phase Equilib Diffus 38:135–142

    Article  Google Scholar 

  • Tripathi A, Middleton S, Lavernia EJ, Sachdev AK, Kulkarni KN (2018) Ternary interdiffusion in β (BCC) phase of the Ti-Al-Nb system. J Phase Equilib Diffus 39(6):841–852

    Google Scholar 

  • Tripathi A, Kulkarni A, Kulkarni KN (2020) Interdiffusion in β (BCC) phase of Ti-Al-Mn system at 1100 ℃. Metall Mater Trans A 51A:1789–1798

    Google Scholar 

  • Varshney A, Sangal S, Kundu S, Mondal K (2016a) Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite and retained austenite. Mater Des 65:75–88

    Article  Google Scholar 

  • Varshney A, Sangal S, Kundu S, Mondal K (2016b) Superior work hardening behavior of moderately high carbon low alloy super strong and ductile multiphase steels with dispersed retained austenite. Mater Des 99:439–448

    Article  Google Scholar 

  • Varshney A, Sangal S, Mondal K (2017) Exceptional work-hardening behaviour of medium-carbon high-silicon low-alloy steels. Metall Mater Trans 48:589–593

    Article  Google Scholar 

  • Varshney A, Sangal S, Gouthama, Pramanick AK, Mondal K (2017) Microstructural evidence of nano-carbides in medium carbon high silicon multiphase steels. Mater Sci Eng A 708:237–247

    Google Scholar 

  • Verma V, Tripathi A, Kulkarni KN (2017) On interdiffusion in FeNiCoCrMn high entropy alloy. J Phase Equilib Diffus 38(4):445–456

    Google Scholar 

  • Verma V, Tripathi A, Venkateswaran T, Kulkarni KN (2020) First report on entire sets of experimentally determined interdiffusion coefficients in quaternary and quinary high entropy alloys. J Mater Res 35(2):162–171

    Google Scholar 

  • Wilson RR (1941) Range and ionization measurements on high speed protons. Phys Rev 60(11):749–753

    Google Scholar 

  • Ziebold TO, Ogilvie RE (1964) An empirical method for electron microanalysis. Anal Chem 36(2):322–327

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the generous support from various funding agencies and organizations with which the discussed case studies have been conducted: Indian Space Research Organization, General Motors USA, GE Research—Bangalore, GOALI grant from NSF and IIT Kanpur. Thanks to GE Research—Bangalore for providing the Nickel-based superalloy for the case study. The authors are also thankful to JEOL’s EPMA experts for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh N. Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, K.N. et al. (2022). Electron Probe Micro-Analyzer: An Equipment for Accurate and Precise Micro-Composition Analysis. In: Biswas, K., Sivakumar, S., Gurao, N. (eds) Electron Microscopy in Science and Engineering. IITK Directions, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-16-5101-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5101-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5100-7

  • Online ISBN: 978-981-16-5101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics