Skip to main content
Log in

Synthesis and Properties of Poorly Crystalline Hydrated Aluminous Goethites

  • Published:
Clays and Clay Minerals

Abstract

Al-substituted goethites were prepared by rapid oxidation of mixed FeCl2-AlCl3 solutions at pH 6.8 in the presence of CO2 at 25°C. A combination of Al substitution and adsorption of CO2 reduced crystal size (except for an increase at small additions of Al) and produced unusual thin, porous particles. Product goethites had surface areas up to 283 m2/g and unit-cell expansions induced by hydration. Substitution of Al for Fe reduced the 111 spacing and increased infrared OH-bending vibrational frequencies. Al substitution split the goethite dehydroxylation endotherm during differential thermal analysis into a doublet and increased the temperature of all reactions. Both cold and hot alkali solutions dissolved Al from the goethite structure.

After drying the product in vacuo at 110°C. X-ray powder diffraction data indicated minimal deviation from Vegard’s law for the goethite-diaspore solid solution up to about 30 mole % Al substitution. Goethite prepared in the presence of 40 mole % Al had a 111 spacing of 2.403 Å corresponding to 36 mole % structural Al if Vegard’s law was obeyed. Rapid oxidation of mixed FeCl2-AlCl3 solutions appears to be conducive to a higher degree of Al substitution in goethite than alkaline aging of hydroxy-Fe(III)-Al coprecipitates.

Резюме

Аl-замещенные гетиты были приготовлены путем быстрого окисления смешанных растворов FeCl2-AlCl3 при рН = 6,8 в присутствии СO2 при температуре 25°С. Сочетание замещения А1 и адсорбции СO2 уменьшало разиер кристаллов (исключая их увеличение при малых добавках Аl) и производило необычно тонкие, пористые частицы. Полученные гетиты имели площади поверхности до 283 M2/г и расширение элементарных ячеек, вызванное гидрацией. Замещение алюминия ферритом уменьшило 111 параметр решётки и увеличило инфракрасные ОН-изгибающие колебательные частоты. Замещение Аl расщепило эндотермальные кривые дегидроксилации гетита во время дифференциального термического анализа в дуплет и увеличило температуру всех реакций. Оба, холодный и горячий щелочные растворы вытесняли Аl из структуры гетита. После высушения продукта в вакууме при 110°С, данные по рентгеновской порошковой дифракции показали минимальное отклонение от закона Вегарда для твёрдых растворов гетита-диаспора до около 30 молярных % замещения А1. Гетит, приготовленный в присутствии 40 молярных % Аl, имел 111 расстояние, равное 2,403 Å, что соответствует 36 молярных % структурного А1, если применить закон Вегарда. Быстрое окисление смешанных растворов FeCl2-AlCl3 может скорее привести к замещению А1 в гетите, чем щелочное старение совместных осадков гидрокси-Fe(III)-Al. [Е.С.]

Resümee

Al-substituierte Goethite wurden durch schnelle Oxidation von FeCl2-AlCl3-Lösungsgemischen bei pH 6,8 und bei der Anwesenheit von CO2 bei 25°C hergestellt. Eine Kombination von Al-Substitution und CO2-Adsorption reduzierte die Kristallgröße (ausgenommen einer Vergrößerung der Kristalle bei geringer Al-Zugabe) und erzeugte ungewöhnlich dünne, poröse Partikel. Die erzeugten Goethite hatten eine Oberfläche bis zu 283 m2/g und zeigten Vergrößerungen der Einheitszelle aufgrund von Hydratation. Die Substitution von Al für Fe reduzierte den 111-Abstand und vergrößerte die OH-Deformations-schwingungsfrequenzen im Infrarot. Bei der Differentialthermoanalyse wurde die Dehydroxylierungs-Endotherme des Goethit dutch Al-Substitution in ein Dublett aufgespalten und erhöhte die Temperatur aller Reaktionen. Sowohl kalte als auch heiße Alkali-Lösungen lösten Aluminium aus der Goethitstruktur.

Röntgenpulverdiffraktometer-Daten zeigten nach dem Trocknen des Produktes im Vakuum bei 110°C eine minimale Abweichung von Vegard’schen Gesetz für Goethit-Diaspor-Mischkristalle bis zu 30 Mol.−% Al-Substitution. Goethit, der in der Anwesenheit von 40 Mol.−% Al hergestellt wurde, hatte einen 111-Abstand von 2,403 Å, was bei Gültigkeit des Vegard’schen Gesetzes 36 Mol.−% Al in der Struktur entspräche. Die schnelle Oxidation von FeCl2-AlCl3-Lösungsgemischen scheint für eine höhergradige Al-Substitution im Goethit förderlicher zu sein als die Alterung dutch alkalische Lösungen von Hydroxy-Fe(III)-A1-Mischfällungen. [U.W.]

Résumé

Des goethites substituées à l’Al ont été préparées par oxidation rapide de solutions mélangées FeCl2-AlCl3 à un pH de 6,8 en présence de CO2 à 25°C. Une combinaison de substitution à Al et d’adsorbtion de CO2 a réduit la taille du cristal (sauf pour un agrandissement lors de l’addition de petites quantités d’Al) et a produit des particules rares, minces, et poreuses. Les goethites produites avaient des aires de surface jusqu’ à 283 m2/g et des expansions de maille induites par hydration. La substitution d’Al à Fe a réduit l’espacement (111) et a accru les fréquences vibrationelles pliant OH de l’infrarouge. La substitution d’Al a divisé I’endotherme de déshydroxylation de la goethite pendant l’analyse thermique différentielle en un doublet e t a accru la température de toutes les réactions. Des solutions chaudes et froides alkalines ont dissolu l’Al de la structure de la goethite.

Après avoir seché le produit in vacuo à 110°C, des données de diffraction poudrée aux rayons-X ont indiqué une déviation minimale de la loi de Vegard pour la solution solide goethite-diaspore jusqu’à près de 30 mole % de substitution d’Al. La goethite préparée en présence de 40 mole % d’Al avait un espacement (111) de 2,403 Å correspondant à 36 mole % d’Al structural si la loi Vegard était suivie. L’oxidation rapide de solutions mélangées FeCl2-AlCl3 semble être plus favorable à un plus haut degré de substitution d’Al dans la goethite que le vieillisement alkalin de coprécipités hydroxy-Fe(III)-Al. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R. J., Posner, A. M., and Quirk, J. P. (1977) Crystal nucleation and growth in hydrolysing iron(III) chloride solutions. Clays & Clay Minerals 25, 49–56.

    Article  Google Scholar 

  • Beneslavsky, S. J. (1957) Neue aluminiumhaltige Minerale in Bauxiten: Dokl. Akad. Nauk S.S.S.R. 133, 1130–1132.

    Google Scholar 

  • Bronevoi, V. A. and Furmakova, L. N. (1975) Formation conditions for aluminogoethites in bauxites: Zap. Vses. Mineral. Obshchest. 104, 461–466. (Chem. Abstr. 84, 62427)

    Google Scholar 

  • Caillère, S. and Pobeguin, T. (1966) Problèmes de structures posés par la présence du fer dans les diaspores: C.R. Acad. Sci. Paris Ser. D 263, 1349–1351.

    Google Scholar 

  • Cornell, R. M., Posner, A. M., and Quirk, J. P. (1974) Crystal morphology and the dissolution of goethite: J. Inorg. Nucl. Chem. 36, 1937–1946.

    Article  Google Scholar 

  • Correns, C. W. and von Engelhardt, W. (1941) Röntgenographische Untersuchungen über den Mineralbestand sedimentärer Eisenerze: Nachr. Akad. Wiss. Gottingen, Math. Phys. Kl. 213, 131–137.

    Google Scholar 

  • Correns, C. W. and Thiel, R. (1963) Zum System α-FeOOH–α-AlOOH: Naturwissenschaften 50, 16.

    Article  Google Scholar 

  • de Villiers, J. M. and van Rooyen, T. G. (1967) Solid-solution formation of lepidocrocite-boehmite and its occurrence in soil: Clay Miner. 1, 229–235.

    Article  Google Scholar 

  • Farmer, V. C. (1974) The anhydrous oxide minerals: in The Infrared Spectra of Minerals, V. C. Farmer, ed., Mineralogical Society, London, 183–204.

    Chapter  Google Scholar 

  • Fey, M. V. and le Roux, J. (1977) Properties and quantitative estimation of poorly crystalline components in sesquioxidic soil clays: Clay & Clay Minerals 25, 285–294.

    Article  Google Scholar 

  • Fitzpatrick, R. W., le Roux, J., and Schwertmann, U. (1978) Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations at near ambient conditions and in soil clays: Clays & Clay Minerals 26, 189–201.

    Article  Google Scholar 

  • Galbraith, S. T., Baird, T., and Fryer, J. R. (1979) Structural changes in β-FeOOH caused by radiation damage: Acta Crystallogr. A35, 197–200.

    Article  Google Scholar 

  • Golden, D.C., Bigham, J. M., and Weed, S.B. (1977) Surface charge and phosphate adsorption on Al-substituted goethite: Agron. Ahstr. 1977, p. 188.

  • Greenland, D. J. and Oades, J. M. (1968) Iron hydroxides and clay surfaces: Trans. 9th Int. Congr. Soil Sci. (Adelaide) I, Elsevier, New York, 657–668.

    Google Scholar 

  • Hingston, F. J., Atkinson, R. J., Posner, A. M., and Quirk, J. P. (1968) Specific adsorption of anions on goethite. Trans. 9th Int. Congr. Soil Sci. (Adelaide) I, Elsevier, New York, 669–678.

    Google Scholar 

  • Janot, C. and Gibert, H. (1970) Les constituants du fer dans certaines bauxites naturelles étudiées par effet Mössbauer: Bull. Soc. Fr. Mineral. Crystallogr. 93, 213–233.

    Google Scholar 

  • Jónás, K. and Solymár, K. (1970) Preparation, X-ray, derivatographic and infrared study of aluminum-substituted goethites: Acta Chim. (Budapest) 66, 383–394. (Chem. Abstr. 74, 93864)

    Google Scholar 

  • Kelly, W. C. (1956) Application of differential thermal analysis to the identification of natural hydrous ferric oxides: Amer. Mineral. 41, 353–355.

    Google Scholar 

  • Klug, H. P. and Alexander, L. E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials: 2nd ed., Wiley, New York, 966 pp.

    Google Scholar 

  • Kohyama, N., Fukushima, K., and Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell: Clays & Clay Minerals 26, 25–40.

    Article  Google Scholar 

  • MacKenzie, R. C. (1957) The oxides of iron aluminum and manganese: in The Differential Thermal Investigation of Clays, R. C. MacKenzie, ed., Mineralogical Society, London, 229–328.

    Google Scholar 

  • Murphy, P. J. (1973) Formation and characterization of hydrolyzed ferric chloride solutions. Ph.D. thesis. Univ. Western Australia, Nedlands, Western Australia.

  • Nahon, D., Janot, C., Karpoff, A., Paquet, H., and Tardy, Y. (1977) Mineralogy, petrography, and structures of iron crusts (ferricretes) developed on sandstones in the western part of Senegal: Geoderma 19, 263–277.

    Article  Google Scholar 

  • Norrish, K. and Taylor, R. M. (1961). The isomorphous replacement of iron by aluminum in soil goethites: J. Soil Sci. 12, 294–306.

    Article  Google Scholar 

  • Papée, D., Tertian, R., and Biais, R. (1958) Recherches sur le constitution des gels et hydrates crystalisés d’alumine: Bull. Soc. Chim. Fr., 1301–1310.

  • Parfitt, R. L., Farmer, V. C., and Russell, J. D. (1977a) Adsorption on hydrous oxides. I. Oxalate and benzoate on goethite: J. Soil Sci. 28, 29–39.

    Article  Google Scholar 

  • Parfitt, R. L., Frazer, A. R., Russell, J. D., and Farmer, V. C. (1977b) Adsorption on hydrous oxides. II. Oxalate, benzoate and phosphate on gibbsite: J. Soil Sci. 28, 40–47.

    Article  Google Scholar 

  • Rooksby, H. P. (1961) Oxides and hydroxides of aluminum and iron: in The X-ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 354–392.

    Google Scholar 

  • Russell, J. D., Paterson, E., Frazer, A. R., and Farmer, V. C. (1975) Adsorption of carbon dioxide on goethite (α-FEOOH) surfaces and its implications for anion adsorption: J. Chem. Soc. Faraday Trans. I. 72, 1082–1087.

    Google Scholar 

  • Ryskin, Ya. I. (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium: in The Infrared Spectra of Minerals, V. C. Farmer, ed., Mineralogical Society, London, 137–181.

    Chapter  Google Scholar 

  • Schwartzmann, E. and Sparr, H. (1969) Die Wasserstoffbrückenbindung in Hydroxiden mit Diasporstructur: Z. Naturforsch. 24b, 8–11.

    Article  Google Scholar 

  • Schwertmann, U. (1959) Über die Synthese difinierter Eisenoxyde unter verschiedenen Bedingungen: Z. Anorg. Allg. Chem. 298, 337–348.

    Article  Google Scholar 

  • Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat-Lösung: Z. Pflanzenernaehr, Dueng., Bodenk. 105, 194–202.

    Article  Google Scholar 

  • Schwertmann, U. and Fitzpatrick, R. W. (1977) Occurrence of lepidocrocite and its association with goethite in Natal soils. Soil Sci. Soc. Amer. J. 41, 1013–1018.

    Article  Google Scholar 

  • Schwertmann, U. and Taylor, R. M. (1977) Iron oxides: in Minerals in Soil Environments, J.B. Dixon and S. B. Weed, eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 145–180.

    Google Scholar 

  • Searle, P. L. and Daly, B. K. (1977) The determination of aluminum, iron manganese and silicon in acid oxalate soil extracts by flame emission and atomic absorption spectrometry: Geoderma 19, 1–10.

    Article  Google Scholar 

  • Serna, C. J., White, J. L., and Hem, S. L. (1977) Anion-aluminum hydroxide gel interactions: Soil Sci. Soc. Amer. J. 41, 1009–1013.

    Article  Google Scholar 

  • Solymár, K. and Jónás, K. (1971) Aluminum inclusions in the goethite lattice and their importance for the Hungarian Bauxites: Banyasz. Kohasz. Lapok. 104, 226–235. (Chem. Abstr. 75, 51320)

    Google Scholar 

  • Taylor, R. M. and Schwertmann, U. (1978) The influence of aluminum on iron oxides. Part I. The influence of Al on Fe oxide formation from the Fe(II) system: Clays & Clay Minerals 26, 373–383.

    Article  Google Scholar 

  • Thiel, R. (1963) Zum system α-FeOOH–α-AlOOH: Z. Anorg. Allg. Chem. 326, 70–78.

    Article  Google Scholar 

  • Towe, K. M. and Rützler, K. (1968) Lepidocrocite iron mineralization in keratose sponge granules: Science 162, 268–269.

    Article  Google Scholar 

  • van Oosterhout, G. W. (1960) Morphology of synthetic submicroscopic crystals of α- and γ-FeOOH and of γ-Fe2O3 prepared from FeOOH: Acta Crystallogr. 13, 932–935.

    Article  Google Scholar 

  • Watson, J. H. L., Cardell, R. R., and Heller, W. (1962) The internal structure of colloidal crystals of β-FeOOH and remarks on their assemblies in Schiller layers. J. Phys. Chem. 66, 1757–1763.

    Article  Google Scholar 

  • Weed, S. B., Golden, D. C., and Bigham, J. M. (1976) Properties of aluminum substituted goethite: Agron. Abstr. 1976, p. 133.

  • Weiser, H. B. and Milligan, W. O. (1940) Electron diffraction study of hydrous oxides: J. Phys. Chem. 44, 1081–1094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fey, M.V., Dixon, J.B. Synthesis and Properties of Poorly Crystalline Hydrated Aluminous Goethites. Clays Clay Miner. 29, 91–100 (1981). https://doi.org/10.1346/CCMN.1981.0290202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1981.0290202

Key Words

Navigation