Skip to main content
Log in

Potassium- and Ammonium-Treated Montmorillonites. II. Calculation of Characteristic Layer Charges

  • Published:
Clays and Clay Minerals

Abstract

The formation of an interstratified structure in dioctahedral smectite was assumed to be influenced by (1) the overall layer charge density and its distribution in the structure, (2) the solvation energy of the cation, and (3) the nature of the solvation agent. By holding factors (2) and (3) constant it was possible to calculate the average local charge densities \(\overline {{\rm{QA}}}\), \(\overline {{\rm{QC}}} \), and \(\overline {{\rm{QE}}} \) which are necessary for formation of 10-, 14-, and 16.8-Å mixed-layer phases in potassium-treated and ethylene glycol (EG) saturated smectites. The values of \(\overline {{\rm{QA}}} \), \(\overline {{\rm{QC}}} \), and \(\overline {{\rm{QE}}} \) were 1.99, 1.2, and 0.56 esu/unit cell, respectively. Ammonium-treated smectites saturated with EG gave corresponding mean local charge densities of 2.7, 1.6, and 0.72 esu/unit cell. Calculations were made under the limiting condition QA > QC > QE > 0.

For K-smectites saturated with EG, Qtot = 1.99pA + 1.2pC + 0.56pE, where Qtot is the total charge (esu/unit cell), and pA, pC, and pE are probability coefficients for 10-, 14-, and 16.8-Å phases in the interstratified structure. The above equation calculated with the aid of least squares and without the limiting condition yields

$${{\rm{Q}}_{{\rm{tot}}}} = {\rm{2}}{\rm{.05pA + 1}}{\rm{.29pC + 0}}{\rm{.33pE}}{\rm{.}}$$

There is a good agreement between values obtained for K-smectites and those for mica, vermiculite, and montmorillonite layer charges for which the above unit-structure distances are typical.

Резюме

Предполагается, что на образование внутринапластованной структуры в диоктаедрическом смектите влияют: (1) полная плотность заряда слоя и её распределение в структуре, (2) энергия сольватации катиона, и (3) природа агента сольватации. Поддерживая факторы (2) и (3) постоянными, можно рассчитать средние местные плотности заряда \(\overline {{\rm{QA}}}\), \(\overline {{\rm{QC}}} \), и \(\overline {{\rm{QE}}} \), необходимые для образования 10-, 14-, и 16,8 фаз со смешанными слоями в смектите, обработанном потасом и насыщенном этиленовым гликолем (ЭГ). Величины \(\overline {{\rm{QA}}} \), \(\overline {{\rm{QC}}} \), и \(\overline {{\rm{QE}}} \), были 1,99, 1,2 и 0,56 эе/эя (электростатическая единица/элементарная ячейка), соответственно. Для смектитов, обработанных аммонием, насыщенных ЭГ, соответствующие средние местные плотности заряда были 2,7, 1,6, и 0,72 эе/эя. Были проведены расчеты при условии: QА > QС > QЕ > 0.

Для К-смектитов, насыщенных ЭГ, Qпол = 1,99рА + 1,2рС + 0,56рЕ, где: Qпол = полный заряд; рА, рС, и рЕ = коеффициенты вероятности для 10-, 14-, и 16,8-Å фаз во внутринапластованной структуре. Вышеупомянутое уравнение, решенное при помощи метода наиментших квадратов и без ограничивающего условия, имеет вид: Наблюдается хорошее соответствие между величинами слойпого заряда для К-смектита и величинами для слюды, вермикулита и монтмориллонита, для которых вышеупомянутые расстояния элементарной структуры явлются типичными. [Е.С.]

Resümee

Es wurde angenommen, daß die Bildung einer Wechsellagerungsstruktur in dioktaedrischem Smektit beeinflußt wird durch (1) die gesamte Schichtladungsdichte und ihre Verteilung in der Struktur, (2) die Solvatationsenergie des Kations, und (3) die Art des Lösungsmittels. Indem die Faktoren (2) und (3) konstant gehalten wurden, war es mSglich die lokalen durchschnittlichen Ladungsdichten \(\overline {{\rm{QA}}} \), \(\overline {{\rm{QC}}} \), und \(\overline {{\rm{QE}}} \) zu berechnen, die fßr die Bildung von 10-, 14- und 16.8-Å Wechsellagerungsphasen in Kalium-behan-delten und Ethylenglycol (EG)-gesätttigten Smektiten notwendig sind. Die werte von \(\overline {{\rm{QA}}} \), \(\overline {{\rm{QC}}} \), und \(\overline {{\rm{QE}}} \) betrugen 1,99, 1,2 und 0,56 esu/uc, bzw. Ammonium-behandelte, EG-gesättigte Smektite gaben entsprechende mittlere lokale Ladungsdichten von 2,7, 1,6, und 0,72 esu/uc. Es wurden Berechnungen durchgeführt mit der Einschränkung QA > QC > QE > 0.

Bei EG-gesättigtem K-Smektit ergab sich Qtot = 1,99pA + 1,2pC + 0,56pE, wobei Qtot die Gesamtladung (esu/uc) ist, und pA, pC, und pE die Wahrscheinlichkeitskoeffizienten für die 10-, 14- und 16,8 Å-Phasen in der Wechsellagerungsstruktur darstellen. Die obere Gleichung, berechnet mit Hilfe der Methode der kleinsten Quadrate und ohne Nebenbedingung, ergibt

$${{\rm{Q}}_{{\rm{tot}}}} = {\rm{2,05pA + 1,29pC + 0,33pE}}{\rm{.}}$$

Es ergibt sich eine gute Übereinstimmung der Werte, die für K-Smektit-, Glimmer-, Vermiculit-, und Montmorillonitschichtladungen erhalten wurden, für die die oben erwähnten Einheitsstrukturabstände typisch sind. [U.W.]

Résumé

On a assumé que la formation d’une structure interstratifiée dans une smectite était influencée par (1) la densité de charge de couche totale, (2) l’énergie de solvation du cation, et (3) la nature de l’agent solvant. En gardant constants les facteurs (2) et (3), il était possible de calculer les densités de charge locales moyennes \(\overline {{\rm{QA}}} \), \(\overline {{\rm{QC}}} \), et \(\overline {{\rm{QE}}} \), qui sont nécessaires à la formation de phases mélangées 10-Å, 14-Å, et 16,8-Å dans les smectites traitées au potassium et saturées de glycol éthylène (EG). Les valeurs de \(\overline {{\rm{QA}}} \), \(\overline {{\rm{QC}}} \), et \(\overline {{\rm{QE}}} \) étaient respectivement 1,99, 1,2, et 0,56 esu/uc. Des smectites traitées à l’ammonium saturées de EG donnaient des densités de charge locales moyennes correspondantes de 2,7, 1,6, et 0,72 esu/uc. Les calculs ont été faits sous les conditions limitantes QA > QC > QE > 0.

Pour les smectites-K saturées de EG, Qtot = 1,99pA + 1,2pC + 0,56pE, où Qtot est la charge totale (esu/uc), et pA, pC, et pE sont des coefficients de probabilité pour les phases 10-Å, 14-Å, et 16,8-Å dans la structure interstratifiée. L’équation ci-dessus calculée à l’aide des carrés moindres et sous les conditions limitantes donne

$${{\rm{Q}}_{{\rm{tot}}}} = {\rm{2,05pA + 1,29pC + 0,33pE}}$$

Les valeurs obtenues pour les smectites-K sont semblables à celles obtenues pour les charges de couche pour le mica, la vermiculite, et la montmorillonite pour lesquelles les distances de structure de maille cidessus sont typiques. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besson, G., Mifsud, A., Tchoubar, C., and Méring, J. (1974) Order and disorder relations in the distribution of the substitutions in smectites, illites and vermiculites: Clays & Clay Minerals 22, 379–384.

    Article  Google Scholar 

  • Bradley, W. F., Weiss, E. J., and Rowland, R. A. (1963) A glycol-sodium vermiculite complex: Clays & Clay Minerals 10, 117–122.

    Article  Google Scholar 

  • Brown, G. and Weir, A. H. (1963) The identity of rectorite and allevardite: in Proc. Int. Clay Conf., Stockholm, 1963, Vol. 1, Th. Rosenqvist and P. Graff-Peterson, eds., Pergamon Press, Oxford, 27–35.

    Google Scholar 

  • Číčel, B. and Machajdík, D. (1978) Zur Charakterisierung von Wechsellagerungsstrukturen, die durch Kaliumbehandlung von Smektiten entstehen: Silikattechnik 29, 259.

    Google Scholar 

  • Číčel, B. and Machajdík, D. (1981) Potassium- and ammonium-treated montmorillonites. I. Interstratified structures with ethylene glycol and water: Clays & Clay Minerals 29, 40–46.

    Article  Google Scholar 

  • Drits, V. A. (1966) On some structural characteristics of long-spacing layer-lattice minerals: Physical Methods of Sedimentary Rocks Investigation, A. G. Kossovskaya, ed., Nauka, Moscow 150–162, (in Russian).

    Google Scholar 

  • Dyal, R. S. and Hendricks, S. B. (1952) Potassium fixation in montmorillonite: Soil Sci. Soc. Amer. Proc. 16, 45–48.

    Article  Google Scholar 

  • Ezekiel, M. and Fox, K. A. (1959) Methods of Correlation and Regression Analysis: Wiley, New York, 548 pp.

    Google Scholar 

  • Hofmann, U., Weiss, A., Koch, G., Mehler, A., and Scholz, A. (1956) Intracrystalline swelling, cation exchange, and anion exchange of minerals of the montmorillonite group and kaolinite: in Clays and Clay Minerals, Proc. 4th Nat. Conf., University Park, Pennsylvania, 1955, Ada Swineford, ed., Nat. Acad. Sci. Nat. Res. Counc. Publ. 456, Washington, D.C., 273–287.

    Google Scholar 

  • Horváth, I. and Novák, I. (1976) Potassium fixation and the charge of montmorillonite layers: in Proc. Int. Clay Conf., Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 185–189.

    Google Scholar 

  • Hower, J. (1967) Order of mixed-layering in illite-montmorillonites: in Clays and Clay Minerals, Proc. 15th Nat. Conf., Pittsburgh, Pennsylvania, 1966, S. W. Bailey, ed., Pergamon Press, New York, 63–74.

    Google Scholar 

  • Lagaly, G., Fernandez Gonzales, M., and Weiss, A. (1976) Problems in layer-charge determination of montmorillonites: Clay Miner. 11, 173–187.

    Article  Google Scholar 

  • Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates: in Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1, L. Heller, ed., Israel Univ. Press, Jerusalem, 61–80.

    Google Scholar 

  • Mackenzie, R. C. (1963) De natura lutorum: in Clays and Clay Minerals, Proc. 11th Nat. Conf., Ottawa, Ontario, 1962, Ada Swineford, ed., Pergamon Press, New York, 11–28.

    Google Scholar 

  • Muravyov, V. I. and Sakharov, B. A. (1970) Experimental study of the sorption of potassium by montmorillonite: Sedimentology 15, 103–113.

    Article  Google Scholar 

  • Sawhney, B. L. (1969) Regularity of interstratification as affected by charge density in layer silicates: Soil Sci. Soc. Amer. Proc. 33, 42–46.

    Article  Google Scholar 

  • Schultz, L. G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites: Clays & Clay Minerals 17, 115–149.

    Article  Google Scholar 

  • Shutov, V. D., Drits, V. A., and Sakharov, B. A. (1969) On the mechanism of a post-sedimentary transformation of montmorillonite in hydromica: in Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1, L. Heller, ed., Israel Univ. Press, Jerusalem, 523–532.

    Google Scholar 

  • Stul, M. S. and Mortier, W. J. (1974) The heterogeneity of the charge density in montmorillonites: Clays & Clay Minerals 22, 391–396.

    Article  Google Scholar 

  • Tettenhorst, R. and Johns, W. D. (1966) Interstratification in montmorillonite: in Clays and Clay Minerals, Proc. 13th Nat. Conf., Madison, Wisconsin, 1964, W. F. Bailey and S. W. Bailey, eds., Pergamon Press, New York, 85–93.

    Google Scholar 

  • Wear, J. I. and White, J. L. (1951) Potassium retention in clay minerals as related to crystal structure: Soil Sci. 71, 1–14.

    Article  Google Scholar 

  • Weaver, C. E. (1958) The effects and geological significance of potassium fixation by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic materials: Amer. Mineral. 43, 839–861.

    Google Scholar 

  • Weaver, C. E. (1968) Relations of composition to structure of dioctahedral 2:1 clay minerals: Clays & Clay Minerals 16, 51–61.

    Article  Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals: Elsevier, Amsterdam, 213 pp.

    Google Scholar 

  • Weir, A. H. (1965) Potassium retention in montmorillonite: Clay Miner. 6, 17–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machajdík, D., Číčel, B. Potassium- and Ammonium-Treated Montmorillonites. II. Calculation of Characteristic Layer Charges. Clays Clay Miner. 29, 47–52 (1981). https://doi.org/10.1346/CCMN.1981.0290107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1981.0290107

Key Words

Navigation