Skip to main content

Advertisement

Log in

Illite-Smectite-Rich Clay Parageneses from Quaternary Tunnel Valley Sediments of the Dutch Southern North Sea — Mineral Origin and Paleoenvironment Implications

  • Published:
Clays and Clay Minerals

Abstract

The Pleistocene sediment infill of elongated glacial incisions of the southern North Sea (SNS) is often referred to as tunnel valleys (TVs). The depositional environment is not yet fully understood and the present study addresses this challenge from the perspective of clay-mineral transformation (illite to illite-smectite) reported from the largest Elsterian TV of the SNS. Material acquired from the K14-12 borehole in the Dutch offshore was analyzed by X-ray diffraction (XRD), electron microscopy, electron microprobe, and laser particle-size analysis. Illite and illite-smectite (I-S) appeared as dominant clays along with minor amounts of kaolinite, kaolinite-smectite, and chlorite. The largest amount of I-S is recognized in the main TV portion, while in pre-glacial and uppermost deposits, I-S is less abundant. The XRD peak fitting and deconvolution suggest that I-S consists of several intermediates — ordered (well crystallized illite + R3 I-S) and disordered (R0 I-S + R0 I-SS). Given the average particle sizes (>2 µm) and Kübler index values (0.415–0.341°Δ2θ), illite as well as chlorite and kaolinite were interpreted as detrital. On the basis of the distinctive distribution, grain sizes, and compositional variations of I-S, formation by means of early diagenetic in situ smectitization of illite under a cold climate is proposed. The process operated via a series of mixed-layer intermediates derived from an illite component being converted progressively to low-charged smectite. The reaction is marked by a significant net loss of K and Al with replacement by Si in a tetrahedral coordination. Layer-charge imbalance is accommodated by Fe(III) and Mg entering an octahedral sheet, whereas Ca partly fills the interlayer sites. Smectitization rates were controlled by illite grain sizes. The results of the present study support strongly the existence of an ice-marginal freshwater depositional environment at the glacial maximum in the SNS in which early diagenesis at low temperatures resulted in incomplete conversion of illite to smectite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriaens, R. (2015) Neogene and Quaternary clay minerals in the Southern North Sea. PhD thesis, University of Leuven, Belgium, 272 pp.

    Google Scholar 

  • Aitchinson, J. (1982) The statistical analysis of compositional data. Journal of the Royal Statistical Society, Series B, 44, 139–177.

    Google Scholar 

  • Allmann, R. (2003) Röntgen-Pulverdiffraktometrie. Springer Berlin, Heidelberg, 275 pp.

    Book  Google Scholar 

  • Benvenuti, A. and Moscariello, A. (2016) High-resolution seismic geomorphology and stratigraphy of a tunnel valley confined ice-margin fans (Elsterian glaciation, southern North Sea). Interpretation, 4, T461–T483.

    Article  Google Scholar 

  • Bijlsma, S. (1981) Fluvial sedimentation from the Fennoscandian area into the north-west European basin during the Late Cenozoic. Geologie en Mijnbouw/Netherlands Journal of Geosciences, 337–345.

    Google Scholar 

  • Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803–832.

    Article  Google Scholar 

  • Blott, S.J. and Pye, K. (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237–1248.

    Article  Google Scholar 

  • Boles, J.R. and Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Research, 49, 55–70.

    Google Scholar 

  • Brown, G. and Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305–306 in: Crystal Structures of Clay Minerals and their X-Ray Identification. Monograph 5, Mineralogical Society, London.

    Google Scholar 

  • Chamley, P.D.H. (1989) Terrigenous Supply in the Ocean. Springer, Berlin Heidelberg, pp. 163–192.

    Google Scholar 

  • Cohen, K.M. and Gibbard, P.L. (2010) Global chronostratigraphical correlation table for the last 2.7 million years, v. 2010. Journal of Quaternary Science, 2, 7.

    Google Scholar 

  • Cuadros, J. and Altaner, S.P. (1998) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: Constraints on the smectite-to-illite transformation mechanism. American Mineralogist, 83, 762–774.

    Article  Google Scholar 

  • de Gans, W. (2007) Quaternary. Pp. 173–195 in: Geology of the Netherlands (T.E. Wong, D.A.J. Batjes, and J. de Jager, editors). Royal Netherlands Academy of Arts and Sciences.

    Google Scholar 

  • Deer, W.A., Howie, R.A., and Zussman, J. (1996) An Introduction to the Rock-Forming Minerals. 2nd edition. Prentice Hall, Harlow, Essex, England, New York, 712 pp.

    Google Scholar 

  • Drits, V.A. and Sakharov, B.A. (1976) X-ray Structural Analysis of Mixed-Layer Minerals. Nauka, Moscow.

    Google Scholar 

  • Drits, V. A. (2003) Structural and chemical heterogeneity of layer silicates and clay minerals. Clay Minerals, 38, 403–432.

    Article  Google Scholar 

  • Dudek, T., Cuadros, J., and Fiore, S. (2006) Interstratified kaolinite-smectite: Nature of the layers and mechanism of smectite kaolinization. American Mineralogist, 91, 159–170.

    Article  Google Scholar 

  • Eberl, D.D. and Velde, B. (1989) Beyond the Kübler index. Clay Minerals, 24, 571–577.

    Article  Google Scholar 

  • Ehlers, J. and Gibbard, P.L. (editors) (2004) Quaternary Glaciations Extent and Chronology Part I: Europe. 475 pp.

    Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A. (2005) Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties. American Mineralogist, 90, 1358–1374.

    Article  Google Scholar 

  • Ferreiro Mählmann, R., Bozkaya, Ö., Potel, S., Bayon, R.L., Šegvić, B., and Nieto, F. (2012) The pioneer work of Bernard Kübler and Martin Frey in very low-grade metamorphic terranes: Paleo-geothermal potential of variation in Kübler-Index/organic matter reflectance correlations. A review. Swiss Journal of Geosciences, 105, 121–152.

    Article  Google Scholar 

  • Folk, R.L. and Ward, W.C. (1957) Brazos River bar [Texas]: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.

    Article  Google Scholar 

  • Fordham, A.W. (1990) Weathering of biotite into dioctahedral clay minerals. Clay Minerals, 25, 51–63.

    Article  Google Scholar 

  • Gibbard, P.L. (2007) Europe cut adrift. Nature, 448, 259,260.

    Article  Google Scholar 

  • Gottlieb, P., Wilkie, G., Sutherland, D., Ho-Tun, E., Suthers, S., Perera, K., Jenkins, B., Spencer, S., Butcher, A., and Rayner, J. (2000) Using quantitative electron microscopy for process mineralogy applications. The Journal of The Minerals, Metals & Materials Society (TMS), 52, 24–25.

    Article  Google Scholar 

  • Griffin, J.J., Windom, H., and Goldberg, E.D. (1968) The distribution of clay minerals in the world ocean. Deep-Sea Research, 15, 433–459.

    Google Scholar 

  • Griffioen, J., Klaver, G., and Westerhoff, W.E. (2016) The mineralogy of suspended matter, aquatic and Cenozoic sediments in the Rhine-Meuse-Scheldt delta area, the Netherlands: An overview and review. Netherlands Journal of Geosciences, 1–85.

    Google Scholar 

  • Grim, R.E. (1968) Clay Mineralogy. 2nd edition. McGraw-Hill Book Company, Inc., New York, 596 pp.

    Google Scholar 

  • Grim, R.E. and Johns, W.D. (1954) Clay mineral investigation of sediments in the Northern Gulf of Mexico. Clays and Clay Minerals, 2, 81–103.

    Article  Google Scholar 

  • Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, A., Eberl, D.D., Formoso, M.L.L., Galan, E., Merriman, R.J., Peacor, D.R., Stanjek, H., and Watanabe, T. (2002) Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index’. Clay Minerals, 37, 389–393.

    Article  Google Scholar 

  • Gupta, S., Collier, J.S., Palmer-Felgate, A., and Potter, G. (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. Nature, 448, 342–345.

    Article  Google Scholar 

  • Harding, R. (2015) Evolution of the giant southern North Sea shelf prism: Testing sequence stratigraphic concepts and the global sea level curve with full three dimensional control. PhD thesis, University of Manchester, UK.

    Google Scholar 

  • Hartmann, B.H., Juhász Bodnár, K., Ramseyer, K., and Matter, A. (1999) Effect of Permo-Carboniferous climate on illitesmectite, Haushi Group, Sultanate of Oman. Clays and Clay Minerals, 47, 131–143.

    Article  Google Scholar 

  • Hey, M. (1954) A new review of the chlorites. Mineralogical Magazine, 30, 277–292.

    Article  Google Scholar 

  • Hong, H., Churchman, G.J., Gu, Y., Yin, K., and Wang, C. (2012) Kaolinite—smectite mixed-layer clays in the Jiujiang red soils and their climate significance. Geoderma, 173–174, 75–83.

    Article  Google Scholar 

  • Huggett, J.M. and Knox, R.W.O. (2006) Clay mineralogy of the Tertiary onshore and offshore strata of the British Isles. Clay Minerals, 41, 5–46.

    Article  Google Scholar 

  • Huuse, M. and Lykke-Andersen, H. (2000) Overdeepened Quaternary valleys in the eastern Danish North Sea: Morphology and origin. Quaternary Science Reviews, 19, 1233–1253.

    Article  Google Scholar 

  • Iacoviello, F., Giorgetti, G., Nieto, F., and Memmi, I. (2012) Evolution with depth from detrital to authigenic smectites in sediments from AND-2A drill core (McMurdo Sound, Antarctica). Clay Minerals, 47, 481–498.

    Article  Google Scholar 

  • Irion, G. and Zöllmer, V. (1999) Clay mineral associations in fine-grained surface sediments of the North Sea. Journal of Sea Research, 41, 119–128.

    Article  Google Scholar 

  • Jackson, M.L. (1957) Frequency distribution of clay minerals in major great soil groups as related to the factors of soil formation. Clays and Clay Minerals, 6, 133–143.

    Article  Google Scholar 

  • Kehew, A.E., Piotrowski, J.A., and Jørgensen, F. (2012) Tunnel valleys: Concepts and controversies — A review. Earth-Science Reviews, 113, 33–58. Elsevier B.V., Amsterdam.

    Article  Google Scholar 

  • Kemp, S.J. and Merriman, R.J. (2009) Polyphase low-grade metamorphism of the Ingleton Group, northern England, UK: A case study of metamorphic inversion in a mudrock succession. Geological Magazine, 146, 237–251.

    Article  Google Scholar 

  • Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277–279.

    Google Scholar 

  • Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Revue de l’Institut Français du Pétrole, 19, 1093–1112.

    Google Scholar 

  • Kuhlmann, G., de Boer, P.L., Pedersen, R.B., and Wong, T.E. (2004) Provenance of Pliocene sediments and paleoenvironmental changes in the southern North Sea region using Samarium—Neodymium (Sm/Nd) provenance ages and clay mineralogy. Sedimentary Geology, 171, 205–226.

    Article  Google Scholar 

  • Laban, C. (1995) The Pleistocene glaciations in the Dutch sector of the North Sea. PhD thesis, University of Amsterdam, The Netherlands.

    Google Scholar 

  • Lagaly, G., Ogawa, M., and Dékány, I. (2006) Clay mineral organic interactions. Pp. 309–377 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Developments in Clay Science, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Lanson, B. (1993) DECOMPXR, X-ray diffraction pattern decomposition program. ERM, Poitiers, France, 48 pp.

    Google Scholar 

  • Lanson, B. and Besson, G. (1992) Characterization of the end of smectite-to-llite transformation: Decomposition of X-ray patterns. Clays and Clay Minerals, 40, 40–52.

    Article  Google Scholar 

  • Lanson, B. and Velde, B. (1992) Decomposition of X-ray diffraction patterns: A convenient way to describe complex I-S diagenetic evolution. Clays and Clay Minerals, 40, 629–643.

    Article  Google Scholar 

  • Lê, S., Josse, J., and Husson, F. (2008) FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25, 1–18.

    Article  Google Scholar 

  • Lee, J.R., Busschers, F.S., and Sejrup, H.P. (2012) Pre-Weichselian Quaternary glaciations of the British Isles, The Netherlands, Norway and adjacent marine areas south of 68N. implications for long-term ice sheet. Quaternary Science Reviews, 44, 213–228.

    Article  Google Scholar 

  • Leipe, T. and Sea, B. (2003) The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material. Baltica, 16, 31–36.

    Google Scholar 

  • de Lugt, I. (2007) Stratigraphical and structural setting of the Palaeogene siliciclastic sediments in the Dutch part of the North Sea Basin. PhD thesis, University of Utrecht, The Netherlands, 112 pp.

    Google Scholar 

  • Mangerud, J. and Jansen, E. (1996) Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Global and Plaretary Change, 12, 11–26.

    Article  Google Scholar 

  • Meunier, A. (2007) Soil hydroxy-interlayered minerals: A reinterpretation of their crystallochemical properties. Clays and Clay Minerals, 55, 380–388.

    Article  Google Scholar 

  • Meunier, A. and Velde, B.D. (2004) Illite — Origins, Evolution and Metamorphism. Springer Verlag, Berlin, 288 pp.

    Google Scholar 

  • Millot, G. (1971) Geology of Clays. Weathering, Sedimentology, Geochemistry. Springer-Verlag, Berlin, 429 pp.

    Google Scholar 

  • Moore, D.M. and Reynolds, J. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 378 pp.

    Google Scholar 

  • Moreau, J. and Huuse, M. (2014) Infill of tunnel valleys associated with landward-flowing ice sheets: The missing Middle Pleistocene record of the NW European rivers? Geochemistry, Geophysics, Geosystems, 15, 1–9.

    Article  Google Scholar 

  • Moreau, J., Huuse, M., Janszen, A., van der Vegt, P., Gibbard, P.L., and Moscariello, A. (2012) The glaciogenic unconformity of the southern North Sea. Pp. 99–110 in: Sediment Provenance Studies in Hydrocarbon Exploration and Production (R.A. Scott, H.R. Smyth, A.C. Morton and N. Richardson, editors). Special Publications, 368, Geological Society, London.

    Google Scholar 

  • Murton, D.K. and Murton, J.B. (2012) Middle and Late Pleistocene glacial lakes of lowland Britain and the southern North Sea Basin. Quaternary International, 260, 115–142. Elsevier Ltd, Amsterdam, and INQUA.

    Article  Google Scholar 

  • Nielsen, O.L.E.B., Rasmussen, E.S., and Thyberg, B.I. (2015) Distribution of clay minerals in the Northern North Sea Basin during the Paleogene and Neogene: A result of source-area geology and sorting processes. Journal of Sedimentary Research, 85, 562–581.

    Article  Google Scholar 

  • Norrish, K. and Pickering, J.G. (1983) Clay minerals. Pp. 281–308 in: Soils, an Australian Viewpoint. Division of Soils, CSIRO, Academic Press, London.

    Google Scholar 

  • Novikoff, A., Tsawlassou, U., Gac, J.Y., Bourgeat, F., and Tardy, Y. (1972) Altération des biotites dans les arènes des pays tempérés, tropicaux et équatoriaux. Sciences Géologiques. Bulletin, 25, 287–305.

    Article  Google Scholar 

  • Petschick, R., Kuhn, G., and Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. International Journal of Marine Geology, Geochemistry and Geophysics, 130, 203–229.

    Google Scholar 

  • Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 13–38.

    Google Scholar 

  • Pouchou, J.L. and Pichoir, F. (1985) “PAP” (ϕ-03C1;-) correction procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.

    Google Scholar 

  • Praeg, D. (1996) Morphology, stratigraphy and genesis of buried Mid-Pleistocene tunnel-valleys in the Southern North Sea Basin. PhD thesis, University of Edinburgh, UK, 207 pp.

    Google Scholar 

  • Ramseyer, K. and Boles, J.R. (1986) Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays and Clay Minerals, 34, 115–124.

    Article  Google Scholar 

  • Reynolds, R.C. and Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites. Clays and Clay Minerals, 18, 25–36.

    Article  Google Scholar 

  • Rieder, M., Cavazzini, G., D’yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.V., Mueller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905–912.

    Google Scholar 

  • Sayles, F.L. (1981) The composition and diagenesis of interstitial solutions — II. Fluxes and diagenesis at the water-sediment interface in the high latitude North and South Atlantic. Geochimica et Cosmochimica Acta, 45, 1061–1086.

    Article  Google Scholar 

  • Sayles, F.L. and Mangelsdorf Jr., P.C. (1977) The equilibration of clay minerals with sea water: exchange reactions. Geochimica et Cosmochimica Acta, 41, 951–960.

    Article  Google Scholar 

  • Schaetzl, R. and Thompson, M.L. (2015) Soils: Genesis and Geomorphology. 2nd edition. Cambridge University Press, Cambridge, UK, 795 pp.

    Google Scholar 

  • Schultz, L.G., Shepard, A.O., Blackmon, P.D., and Starkey, H.C. (1971) Mixed — layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico. Clays and Clay Minerals, 19, 137–150.

    Article  Google Scholar 

  • Sengupta, P., Saikia, P.C., and Borthakur, P.C. (2008) SEM-EDX characterization of an iron-rich kaolinite clay. Journal of Scientific and Industrial Research, 67, 812–818.

    Google Scholar 

  • Shell (1993) K14 - 12 end of well report: NLOG_GS_PUB_9409_IG8098006_K14-12. 10 pp.

    Google Scholar 

  • Smoot, T.W. (1960) Clay Mineralogy of Pre-Pennsylvanian Sandstones and Shales of the Illinois Basin, Part I. Relation of Permeability to Clay Mineral Suite. Illinois State Geological Survey, USA, 20 pp.

    Google Scholar 

  • Środoń, J. (2006) Identification and quantitative analysis of clay minerals. Pp. 767–787 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Developments in Clay Science, Elsevier, Amsterdam.

    Google Scholar 

  • Suquet, H., De la Calle, C., and Pezerat, H. (1975) Swelling and structural organization of saponite. Clays and Clay Minerals, 23, 1–9.

    Article  Google Scholar 

  • Thorez, J. (1989) Between the crystal and the solutions. A graphical overview of the passage to, from and of the clay minerals in the lithosphere during weathering. Pp. 49–120 in: Weathering; Its Products and Deposits. Processes (V.P. Evangelou, G. Faure, J. Goni, P.L.C. Grubb, P.A. Hill, O. Lahondney-Sarc, A.J. Melfi, E. Mendelovici, A.P. Nikitina, W.F. Pickering, and S.S. Augustithis, editors). Theophrastus Publishers S. A., Greece.

    Google Scholar 

  • Uzarowicz, Ł., Šegvić, B., Michalik, M., and Bylina, P. (2012) The effect of hydrochemical conditions and pH of the environment on phyllosilicate transformations in the weathering zone of pyrite-bearing schists in Wieściszowice (SW Poland). Clay Minerals, 47, 401–417.

    Article  Google Scholar 

  • van der Vegt, P., Janszen, A., and Moscariello, A. (2012) Tunnel valleys: Current knowledge and future perspectives. Pp. 75–97 in: Sediment Provenance Studies in Hydrocarbon Exploration and Production (R.A. Scott, H.R. Smyth, A.C. Morton and N. Richardson, editors). Special Publications, 368, Geological Society, London.

    Google Scholar 

  • Warr, L.N. and Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141–152.

    Article  Google Scholar 

  • Weaver, C.E. and Beck, K.C. (1971) Clay-water diagenesis during burial or how mud becomes gneiss. Geological Society of America Special Papers, 134, 1–78.

    Article  Google Scholar 

  • Welton, J.E. (1984) SEM Petrology Atlas. The American Association of Petroleum Geologists. Methods in Exploration Series, 4, Tulsa, Oklahoma, USA.

    Google Scholar 

  • Westerhoff, W. (2009) Stratigraphy and sedimentary evolu-tion: The lower Rhine-Meuse system during the Late Pliocene and Early Pleistocene (southern North Sea Basin). PhD thesis, University of Amsterdam, The Netherlands.

    Google Scholar 

  • Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Whittig, L.D. and Jackson, M.L. (1955) Mineral content and distribution as indexes of weathering in the Omega and Ahmeek soils of Northern Wisconsin. Clays and Clay Minerals, 4, 362–371.

    Article  Google Scholar 

  • Zagwijn, W.H. (1989) The Netherlands during the Tertiary and the Quaternary: A case history of coastal lowland evolution. Geologie en Mijnbouw, 68, 107–120.

    Google Scholar 

  • Zuther, M., Brockamp, O., and Clauer, N. (2000) Composition and origin of clay minerals in Holocene sediments from the south-eastern North Sea. Sedimentology, 47, 119–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branimir Šegvić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šegvić, B., Benvenuti, A. & Moscariello, A. Illite-Smectite-Rich Clay Parageneses from Quaternary Tunnel Valley Sediments of the Dutch Southern North Sea — Mineral Origin and Paleoenvironment Implications. Clays Clay Miner. 64, 608–627 (2016). https://doi.org/10.1346/000986016820500438

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986016820500438

Key Words

Navigation