Skip to main content
Log in

Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ∼1.3 Ma, Shaanxi, northwestern China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

To understand climate changes recorded in the Luochuan loess-palaeosols, Shaanxi province, northwestern China, clay mineralogy was studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) methods. XRD results show that clay mineral compositions in the Luochuan loess-palaeosols are dominantly illite, with minor chlorite, kaolinite, smectite, and illite-smectite mixed-layer clays (I/S). Illite is the most abundant species in the sediments, with a content of 61%–83%. The content of chlorite ranges from 5%–22%, and the content of kaolinite ranges from 5%–19%. Smectite (or I/S) occurs discontinuously along the loess profile, with a content of 0–8%. The Kübler index of illite (IC) ranges from 0.255°–0.491°, and the illite chemical index (ICI) ranges from 0.294–0.394. The CIA values of the loesspalaeosols are 61.9–69.02, and the R3+/(R3+ + R2+ + M+) values are 0.508–0.589. HRTEM observations show that transformation of illite to illite-smectite has occurred in both the loess and palaeosol, suggesting that the Luochuan loess-palaeosols have experienced a certain degree of chemical weathering. The Luochuan loess-palaeosols have the same clay mineral assemblage along the profile. However, the relative contents of clay mineral species, CIA, ICI, and IC values fluctuate frequently along the profile, and all these parameters display a similar trend. Moreover, climate changes suggested by the clay index are consistent with variations in the deep-sea δ18O records and the magnetic susceptibility value, and thus, climate changes in the Luochuan region have been controlled by global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad I, Chandra R (2013). Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci, 66: 73–89

    Article  Google Scholar 

  • Andreola F, Castellini E, Manfredini T, Romagnoli M (2004). The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. J Eur Ceram Soc, 24(7): 2113–2124

    Article  Google Scholar 

  • Biscaye P E (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76(7): 803–832

    Article  Google Scholar 

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Markovic S (2011). An evaluation of geochemical weathering indices in loess-paleosol studies. Quat Int, 240(1–2): 12–21

    Article  Google Scholar 

  • Buggle B, Hambach U, Muller K, Zoller L, Markovic S B, Glaser B (2014). Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena, 117: 4–22

    Article  Google Scholar 

  • Burt R (2004). Soil survey laboratory methods manual. Soil Survey Investigations Report, 42: 735

    Google Scholar 

  • Chen J, An Z, Liu L, Li J, Yang J, Chen Y (2001). Variation of dust chemical composition in Loess Plateau and chemical weathering of Asia inland after 2.5 Ma B.P. Sci China Earth Sci, 31(2): 136–145

    Google Scholar 

  • Chen L, Zhang L, Wang H, Zhou L, Chen J, Yuan B (2004). Illite of ambigenous type in Luochuan Loess Section. Chin Sci Bull, 49(23): 2449–2454 (in Chinese)

    Google Scholar 

  • Ehrmann W (1998). Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on palaeoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 139(3–4): 213–231

    Article  Google Scholar 

  • Gingele F X, De Deckker P, Hillenbrand C D (2001). Clay mineral distribution in surface sediments between Indonesia and NW Australia: source and transport by ocean currents. Deep-sea Geology, 179(3–4): 135–146

    Google Scholar 

  • Hallam A, Grose J A, Ruffell A H (1991). Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr Palaeoclimatol Palaeoecol, 81 (3–4): 173–187

    Article  Google Scholar 

  • Hong H L (2010). A review on palaeoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1–8 (in Chinese)

    Google Scholar 

  • Hong H L, Du D, Li R, Churchman J G, Yin K, Wang C (2012a). Mixedlayer clay minerals in the Xuancheng red clay sediments, Xuancheng, Anhui Province. Earth Science-Journal of China University of Geosciences, 37(3): 424–432 (in Chinese)

    Google Scholar 

  • Hong H L, Li Z, Xue H J, Zhu Y H, Zhang K X, Xiang S Y (2007). Oligocene clay mineralogy of the Linxia basin: evidence of palaeoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau. Clays Clay Miner, 55(5): 491–505

    Article  Google Scholar 

  • Hong H L, Wang C, Zheng K, Zhang K, Yin K, Li Z (2012b). Clay mineralogy of the Zhada sediments: evidence for climatic and tectonic evolution since ∼9 Ma in Zhada, Southwestern Tibet. Clays Clay Miner, 60(3): 240–253

    Article  Google Scholar 

  • Hong H L, Zhang N, Li Z, Xue H, Xia W, Yu N (2008). Clay mineralogy across the P-T boundary of the Xiakou section, China: evidence of clay provenance and environment. Clays Clay Miner, 56(2): 131–143

    Article  Google Scholar 

  • Hu P, Liu Q, Torrent J, Barron V, Jin C (2013). Characterizing and quantifying iron oxides in Chinese loess/paleosols: implications for pedogenesis. Earth Planet Sci Lett, 369–370: 271–283

    Article  Google Scholar 

  • Jaramillo S S, Mccarthy P J, Trainor T P, Fowell S J, Fiorillo A R (2015). Origin of clay minerals in alluvial palaeosols, Prince Creek formation, North slope, Alaska U.S.A: influence of volcanic ash on pedogenesis in the late Cretaceous Arctic. J Sediment Res, 85(2): 192–208

    Article  Google Scholar 

  • Ji J, Chen J, Liu L, Lu H (1999). Chemical weathering and magnetic susceptibility increase of chlorite in Luochuan loess. Prog Nat Sci, 9 (7): 619–623 (in Chinese)

    Google Scholar 

  • Ji J, Chen J, Lu H (1998). Transmission electron microscopy evidence of illite origin in Luochuan loess, Shaanxi. Chin Sci Bull, 43(19): 2095–2098 (inChinese)

    Google Scholar 

  • Ji J, Chen J, Wang H (1997). Crystallinity of illite from the Luochuan Loess-Palaeosol sequence, Shaanxi Province. Geological Review, 43 (2): 181–185 (in Chinese)

    Google Scholar 

  • Keller W D (1970). Environmental aspects of clay minerals. J Sediment Petrol, 40(3): 788–854

    Google Scholar 

  • Kisch H J (1991). Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorph Geol, 9(6): 665–670

    Article  Google Scholar 

  • Li Y, Song Y, Chen X, Li J, Mamadjanov Y, Aminov J (2016). Geochemical composition of Tajikistan loess and its provenance implications. Palaeogeogr Palaeoclimatol Palaeoecol, 446: 186–194

    Article  Google Scholar 

  • Lu H, An Z, Liu H, Yang W (1998). Periodicity of east Asian winter and summer monsoon variation during the past 2500 ka recorded by loess deposits at Luochuan on the central Chinese loess plateau. Geological Review, 44(5): 553–558 (in Chinese)

    Google Scholar 

  • Lu S, Wang S, Chen Y (2015). Palaeopedogenesis of red palaeosols in Yunnan Plateau, southwestern China: pedogenical, geochemical and mineralogical evidences and palaeoenvironmental implication. Palaeogeogr Palaeoclimatol Palaeoecol, 420: 35–48

    Article  Google Scholar 

  • Lu Y, Sun J, Li P (2008). Predicting palaeoclimate since 140 Ma B.P. by experiment of carbon isotope in loess. Ganhanqu Ziyuan Yu Huanjing, 22(1): 60–63 (in Chinese)

    Google Scholar 

  • Meunier A, Caner L, Hubert F, El Albani A, Prét D (2013). The weathering intensity Scale(WIS): an alternative approach of the chemical index of alteration (CIA). Am J Sci, 313(2): 113–143

    Google Scholar 

  • Nesbitt H W, Young G M (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885): 715–717

    Article  Google Scholar 

  • Nieto F, Ortega-Huertas M, Peacor D R, Arostegui J (1996). Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner, 44(3): 304–323

    Article  Google Scholar 

  • Perederij V I (2001). Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine. Quat Int, 76–77: 113–121

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F (1996). Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Deep-sea Geology, 130: 203–229

    Google Scholar 

  • Rao W, Li X, Gao Z, Luo T (2004). Distribution of fixed-NH4 +-N in Luochuan loess section. J Desert Res, 24(6): 685–688 (in Chinese)

    Google Scholar 

  • Rateev M A, Gorbunova Z N, Lisitzyn A P, Nosov G L (1969). The distribution of clay minerals in the oceans. Sedimentology, 13(1–2): 21–43

    Article  Google Scholar 

  • Schatz A, Scholten T, Kühn P (2015). Paleoclimate and weathering of the Tokaj (Hungary) loess–paleosol sequence. Palaeogeogr Palaeoclimatol Palaeoecol, 426: 170–182

    Article  Google Scholar 

  • Singer A (1984). The Palaeoclimatic interpretation of clay minerals in sediment—A review. Earth Sci Rev, 21(4): 251–293

    Article  Google Scholar 

  • Sun J, Liu T (2002). Pedostratigraphic subdivision of the loess-palaeosol sequences at Luochuan and a new interpretation on the palaeoenvironmental significance of L9 And L15. Quaternary Sciences, 22(5): 406–412 (in Chinese)

    Google Scholar 

  • Sun Y, Kutzbach J, An Z, Clemens S, Liu Z, Liu W, Liu X, Shi Z, Zheng W, Liang L, Yan Y, Li Y (2015). Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 115: 132–142

    Article  Google Scholar 

  • Sun Z, Owens P R, Han C, Chen H, Wang X, Wang Q (2016). A quantitative reconstruction of a loess–paleosol sequence focused on paleosol genesis: an example from a section at Chaoyang, China. Geoderma, 266: 25–39

    Article  Google Scholar 

  • Terhorst B, Kuhn P, Damm B, Hambach U, Meyer-Heintze S, Sedov S (2014). Paleoenvironmental fluctuations as recorded in the loesspaleosol sequence of the Upper Paleolithic site Krems-Wachtberg. Quat Int, 351: 67–82

    Article  Google Scholar 

  • Trindade MJ, Rocha F, Dias MI, Prudêncio MI (2013). Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner, 48(1): 59–83

    Article  Google Scholar 

  • Wang H, Zhou J (1998). On the indices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395–405 (in Chinese)

    Google Scholar 

  • Xie Q, Chen T, Sun Y, Li X, Xu X (2008). Composition of ferric oxides in the Luochuan loess-red clay sequences on China’s loess plateau and its palaeoclimatic implications. Acta Mineralogica Sinica, 28(4): 389–396 (in Chinese)

    Google Scholar 

  • Xu Y, Hong H, He Y (2010). Clay mineralogy and its geological significance of sediments in the foreland basin of West Kunlun Mountains. Acta Sedimentologica Sinica, 28(4): 659–668 (in Chinese)

    Google Scholar 

  • Yang H, Pancost R D, Tang C, Ding W, Dang X, Xie S (2014). Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess–paleosol sequence: implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79

    Article  Google Scholar 

  • Yang M, Zhang H, Lei G, Zhang W, Fan H, Chang F, Niu J, Chen Y (2006). Biomarkers in weakly developed palaeosol (L1SS1) in the Luochuan loess section and reconstructed palaeovegetation-environment during the interstade of the last glaciation. Quaternary Sciences, 26(6): 976–984 (in Chinese)

    Google Scholar 

  • Yuan B, Ba T, Cui J, Yin Q (1987). The relationship between gully development and climatic changes in the loess Yuan region: examples from Luochuan, Shaanxi Province. Acta Geogr Sin, 42 (4): 328–337 (in Chinese)

    Google Scholar 

  • Zhang H, Yang M, Zhang W, Lei G, Chang F, Pu Y, Fan H (2007). Diversification of biomarkers and vegetation of S4 palaeosol and the adjacency loess in the Luochuan loess section. Sci China Earth Sci, 37(12): 1634–1642 (in Chinese)

    Google Scholar 

  • Zheng H, Gu X, Han J, Deng B (1985). Clay minerals in loess of China and their tendency in loess section. Quaternary Sciences, 6(1): 158–165 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41272053 and 41472041). C.W. acknowledges a postdoctoral science foundation of China (2015M582301), Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), and National Natural Science Youth Foundation of China (Grant No. 41602037). The authors wish to thank Dr. Yu J. S. for XRD analysis, Dr. Liu X.W. for HRTEM analysis and Dr. Yang H. and Dr. Yang Q. for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlie Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, C., Hong, H., Cheng, F. et al. Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ∼1.3 Ma, Shaanxi, northwestern China. Front. Earth Sci. 12, 134–147 (2018). https://doi.org/10.1007/s11707-017-0625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-017-0625-4

Keywords

Navigation