Skip to main content
Log in

Stability of magadiite between 20 and 100°C

  • Published:
Clays and Clay Minerals

Abstract

New experimental data with respect to the solubility of natural and synthesized magadiite at elevated temperatures and in alkaline solutions are presented. The results show that the solubility of magadiite increases according to the expression ln(Kmag) = −8146·T(K)−1 − 5.71 from 20 to 100°C (\((\Delta G_{\rm{R}}^0({{\rm{K}}_{{\rm{mag}}}}) = 19.6 \pm 0.3\) and \(\Delta H_{\rm{R}}^0({{\rm{K}}_{{\rm{mag}}}}) = 16.2 \pm 0.4\;{\rm{kcal}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}\)). The experimental results and the related data from the literature suggest that the formation of magadiite may be favored by a decrease of temperature and pH (pH >9) as well by large amounts of Na+ ions and low ionic strength. These effects are related to the value of \(\Delta H_{\rm{R}}^0({{\rm{K}}_{{\rm{mag}}}})\), the distribution of dissolved silica species, the stoichiometry of magadiite, and the occurrence of negatively-charged species, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnorsson, S., Sigurdsson, S. and Svavarsson, H. (1982) The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0° to 370°C. Geochimica et Cosmochimica Acta, 46, 1513–1532.

    Article  Google Scholar 

  • Baes, C.F. and Mesmer, R.E. (1976) The Hydrolysis of Cations. Wiley-Interscience, New York, 489 pp.

  • Barth-Wirsching, U. and Höller, H. (1989) Experimental studies on zeolite formation conditions. European Journal of Mineralogy, 1, 489–506.

    Article  Google Scholar 

  • Bricker, O.P. (1969) Stability constants and free energies of formation of magadiite and kenyaite. American Mineralogist, 5, 1026–1033.

    Google Scholar 

  • Brindley G.W. (1969) Unit cell of Magadiit in air, vacuo and under other conditions. American Mineralogist, 54, 1583–1591.

    Google Scholar 

  • Busey, R.H. and Mesmer, R.E. (1977) Ionization equilibria of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300°C. Inorganic Chemistry, 16, 2444–2450.

    Article  Google Scholar 

  • Dietzel, M. and Usdowski, E. (1995) Depolymerization of soluble silicate in dilute aqueous solutions. Colloid and Polymer Science, 273, 590–597.

    Article  Google Scholar 

  • Eikenberg, J. (1990) On the problem of silica solubility at high pH. Nationale Genossenschaft für die Lagerung radioaktiver Abfalle, Baden (Switzerland). Technical Report 90–36, 54 pp.

  • Eugster, H.P. (1967) Hydrous sodium silicates from Lake Magadi, Kenya; Precursors of bedded chert. Science, 157, 1177–1180.

    Article  Google Scholar 

  • Eugster, H.P. (1970) Chemistry and origin of the brines of Lake Magadi, Kenya. Mineralogical Society of America Special Paper, 3, 213–235.

    Google Scholar 

  • Eugster, H.P. and Maglione, G. (1979) Brines and evaporites of the Lake Chad basin. Geochimica et Cosmochimica Acta, 43, 973–981.

    Article  Google Scholar 

  • Fritz, B., Zins-Pawlas, M.-P. and Gueddari, M. (1987) Geochemistry of silica-rich brines from Lake Natron (Tanzania). Science Géologiques Bulletin, 40, 97–110.

    Article  Google Scholar 

  • Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung Cregu, C. and Wanner, H. (1992) Chemical Thermodynamics of Uranium. Chemical Thermodynamics 1. Nuclear Energy Agency, North-Holland Elsevier, 750 pp.

    Google Scholar 

  • Hay, R.L. (1986) Geological occurrences of zeolites and some associated minerals. Pp. 35–40 in: New Developments in Zeolite Science and Technology (Y. Murakami, A. Iijima, J.W. Ward, editors). Elsevier, Amsterdam, Oxford.

    Chapter  Google Scholar 

  • Helgeson, H.C. (1967) Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. Journal of Physical Chemistry, 71, 3121–3136.

    Article  Google Scholar 

  • Hem, J.D. (1970) Study and interpretation of the chemical characteristics of natural waters. Geological Survey Water-Supply Paper, 1473, 363 pp.

  • Houser, B.B. (1982) Chert derived from magadiite in the middle Eocene McBean Formation, South Carolina. Abstracts, 17th Annual Meeting of the Northeastern Section and 31st Annual Meeting Southeastern Section, Geological Soiety of America, 14, 27.

    Google Scholar 

  • Iler, R.K. (1979) The Chemistry of Silica — Solubility, Polymerization, Colloid and Surface Properties and Biochemistry. Wiley-Interscience, New York, 866 pp.

    Google Scholar 

  • Jones, B.F., Eugster, H.P. and Rettig, S.F. (1977) Hydrochemistry of the Lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta, 41, 53–72.

    Article  Google Scholar 

  • Kwon, O.-Y., Jeong, S.-Y., Suh, J.-K. and Lee, J.-M. (1995) Hydrothermal syntheses of Na-magadiite and Na-kenyaite in the presence of carbonate. Bulletin of the Korean Chemical Society, 16, 737–741

    Google Scholar 

  • Lagaly, G., Beneke, K. and Weiss, A. (1975) Magadiit and H-Magdiit. I-Sodium Magadiit and some of its derivatives. American Mineralogist, 60, 642–649.

    Google Scholar 

  • Lide, D.R. (1996) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Maglione, G. (1970) Magadiite, an authentic sodic silicate of the evaporite facies in Kanem, northeast shore of Lake Chad. Alsace-Lorraine Service Carte Géologiques Bulletin, 23, 177–189.

    Article  Google Scholar 

  • Manega, P. and Bieda, S. (1987) Modern sediments of Lake Natron, Tanzania. Science Géologiques Bulletin, 40, 83–95.

    Article  Google Scholar 

  • McAtee, J.L., House, R. and Eugster, H.P. (1968) Magadiite from Trinity Country, California. American Mineralogist, 53, 2061–2069.

    Google Scholar 

  • Rimstidt, J.D. (1997) Quartz solubility at low temperature. Geochimica et Cosmochimica Acta, 61, 2553–2558.

    Article  Google Scholar 

  • Rimstidt, J.D. and Barnes, H.L. (1980) The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta, 44, 1683–1699.

    Article  Google Scholar 

  • Rooney, T.P., Jones, B.F. and Neal, J.T. (1969) Magadiite from Alkali Lake, Oregon. American Mineralogist, 54, 1035–1043.

    Google Scholar 

  • Schecher, W.D. and McAvoy, D.C. (1998) MINEQL+: A chemical equilibrium modeling system, Version 4.0 for Windows, User’s manual. Environmental Research Software, Hallowell, Maine, 318 pp.

    Google Scholar 

  • Scholzen, G., Beneke, K. and Lagaly, G. (1991) Diversity of magadiite. Zeitschrift für Anorganische und Allgemeine Chemie, 597, 183–196.

    Article  Google Scholar 

  • Seward, T.M. (1974) Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer solutions to 350°C. Geochimica et Cosmochimica Acta, 38, 1651–1664.

    Article  Google Scholar 

  • Sjöberg, S., Nordin, A. and Ingri, N. (1981) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. II. Formation constants for the monosilicate ions SiO(OH)3 and SiO2OH)22∞. Marine Chemistry, 10, 521–532.

    Article  Google Scholar 

  • Sjöberg, S., Hägglund, Y., Nordin, A. and Ingri, N. (1983) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solutions: V. Acidity constants of silicic acid and the ionic product of water in the medium range 0.05–2.0 M Na(Cl) at 25°C. Marine Chemistry, 13, 35–44.

    Article  Google Scholar 

  • Sjöberg, S., Öhman, L.O. and Ingri, N. (1985) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. 11. Polysilicate formation in alkaline aqueous solution. A combined potentiometric and 29Si NMR study. Acta Chemica Scandinavica A, 39, 93–107.

    Article  Google Scholar 

  • Surdam, R.C., Eugster, H.P. and Mariner, R.H. (1972) Magadi-Type Chert in Jurassic and Eocene to Pleistocene Rocks, Wyoming. Geological Society of America Bulletin, 83, 2261–2262.

    Article  Google Scholar 

  • Wolery, T.J. (1992) EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user’s guide and related documentation (version 7.0). Lawrence Livermore National Laboratory Report UCRL-MA-110662 (3).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dietzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietzel, M., Letofsky-Papst, I. Stability of magadiite between 20 and 100°C. Clays Clay Miner. 50, 657–666 (2002). https://doi.org/10.1346/000986002320679387

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/000986002320679387

Key Words

Navigation