Adam, C., Grandi, N., Klimas, P., Sánchez-Guillén, J. and Wereszczyński, A., “Compact boson stars in K field theories”, Gen. Relativ. Gravit., 42, 2663–2701, (2010). [DOI], [ADS], [arXiv:0908.0218 [hep-th]]. (Cited on page 17.)
ADS
MathSciNet
MATH
Article
Google Scholar
Agnihotri, P., Schaffner-Bielich, J. and Mishustin, I.N., “Boson stars with repulsive self-interactions”, Phys. Rev. D, 79, 084033, (2009). [DOI], [ADS], [arXiv:0812.2770]. (Cited on page 15.)
ADS
Article
Google Scholar
Akhoury, R. and Gauthier, C.S., “Galactic Halos and Black Holes in Non-Canonical Scalar Field Theories”, arXiv, e-print, (2008). [ADS], [arXiv:0804.3437 [hep-th]]. (Cited on page 17.)
Alcubierre, M., Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, 140, (Oxford University Press, Oxford; New York, 2008). (Cited on page 10.)
MATH
Book
Google Scholar
Alcubierre, M., Becerril, R., Guzmán, F.S., Matos, T., Núñez, D. and Ureña-López, L.A., “Numerical studies of Φ2-oscillatons”, Class. Quantum Grav., 20, 2883–2903, (2003). [DOI], [ADS], [arXiv:gr-qc/0301105]. (Cited on pages 20, 21, and 22.)
ADS
MATH
Article
Google Scholar
Alcubierre, M., Degollado, J.C., Núñez, D., Ruiz, M. and Salgado, M., “Dynamic transition to spontaneous scalarization in boson stars”, Phys. Rev. D, 81, 124018, (2010). [DOI], [arXiv:1003.4767 [gr-qc]]. (Cited on page 26.)
ADS
Article
Google Scholar
Alic, D., Theoretical issues in Numerical Relativity simulations, Ph.D. thesis, (Universitat de les Illes Balears, Palma, 2009). URL (accessed 3 February 2012): http://hdl.handle.net/10803/9438. (Cited on page 25.)
Google Scholar
Amaro-Seoane, P., Barranco, J., Bernal, A. and Rezzolla, L., “Constraining scalar fields with stellar kinematics and collisional dark matter”, J. Cosmol. Astropart. Phys., 11, 2, (2010). [DOI], [ADS], [arXiv:1009.0019 [astro-ph.CO]]. (Cited on pages 15, 16, and 41.)
ADS
Article
Google Scholar
Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [DOI], [ADS], [arXiv:gr-qc/0405109]. (Cited on page 10.)
Google Scholar
Arodz, H., Karkowski, J. and Świerczyński, Z., “Spinning Q-balls in the complex signum-Gordon model”, Phys. Rev. D, 80, 067702, (2009). [DOI], [ADS], [arXiv:0907.2801 [hep-th]]. (Cited on page 17.)
ADS
Article
Google Scholar
Astefanesei, D. and Radu, E., “Boson stars with negative cosmological constant”, Nucl. Phys. B, 665, 594–622, (2003). [DOI], [arXiv:gr-qc/0309131]. (Cited on page 45.)
ADS
MathSciNet
MATH
Article
Google Scholar
Balakrishna, J., A numerical study of boson stars: Einstein equations with a matter source, Ph.D. thesis, (Washington University, St. Louis, 1999). [ADS], [arXiv:gr-qc/9906110]. (Cited on page 34.)
Google Scholar
Balakrishna, J., Bondarescu, R., Daues, G. and Bondarescu, M., “Numerical simulations of oscillating soliton stars: Excited states in spherical symmetry and ground state evolutions in 3D”, Phys. Rev. D, 77, 024028, (2008). [DOI], [ADS], [arXiv:0710.4131 [gr-qc]]. (Cited on page 21.)
ADS
Article
Google Scholar
Balakrishna, J., Bondarescu, R., Daues, G., Guzmán, F.S. and Seidel, E., “Evolution of 3D Boson Stars with Waveform Extraction”, Class. Quantum Grav., 23, 2631–2652, (2006). [DOI], [ADS], [arXiv:gr-qc/602078]. (Cited on page 32.)
ADS
MathSciNet
MATH
Article
Google Scholar
Balakrishna, J., Seidel, E. and Suen, W.-M., “Dynamical evolution of boson stars. II. Excited states and self-interacting fields”, Phys. Rev. D, 58, 104004, (1998). [DOI], [ADS], [arXiv:gr-qc/9712064]. (Cited on pages 30 and 31.)
ADS
Article
Google Scholar
Bao, W. and Dong, X., “Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars”, J. Comput. Phys., 230, 5449–5469, (2011). [DOI], [ADS]. (Cited on page 18.)
ADS
MathSciNet
MATH
Article
Google Scholar
Barranco, J. and Bernal, A., “Constraining scalar field properties with boson stars as black hole mimickers”, in Ureña-López, L.A., Morales-Técotl, H.A., Linares-Romero, R., Santos-Rodríguez, E. and Estrada-Jiménez, S., eds., VIII Workshop of the Gravitation and Mathematical Physics Division of the Mexican Physical Society, Tuxtla Gutiérrez, Chiapas, Mexico, 22–26 November 2010, AIP Confernce Proceedings, 1396, pp. 171–175, (American Institute of Physics, Melville, NY, 2011). [DOI], [arXiv:1108.1208 [astro-ph.CO]]. (Cited on page 40.)
Google Scholar
Barranco, J. and Bernal, A., “Self-gravitating system made of axions”, Phys. Rev. D, 83, 043525, (2011). [DOI], [ADS], [arXiv:1001.1769 [astro-ph.CO]]. (Cited on page 15.)
ADS
Article
Google Scholar
Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., Alcubierre, M., Núñez, D. and Sarbach, O., “Are black holes a serious threat to scalar field dark matter models?”, Phys. Rev. D, 84, 083008, (2011). [DOI], [arXiv:1108.0931 [gr-qc]]. (Cited on page 41.)
ADS
Article
Google Scholar
Bartnik, R. and Mckinnon, J., “Particlelike Solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141–144, (1988). [DOI]. (Cited on page 27.)
ADS
MathSciNet
Article
Google Scholar
Basu, P., Bhattacharya, J., Bhattacharyya, S., Loganayagam, R., Minwalla, S. and Umesh, V., “Small hairy black holes in global AdS spacetime”, J. High Energy Phys., 2010(10), 045, (2010).[DOI], [ADS], [arXiv:1003.3232 [hep-th]]. (Cited on page 46.)
ADS
MathSciNet
MATH
Article
Google Scholar
Battye, R.A. and Sutcliffe, P.M., “Q-ball dynamics”, Nucl. Phys. B, 590, 329–363, (2000). [DOI], [ADS], [arXiv:hep-th/0003252]. (Cited on page 17.)
ADS
Article
Google Scholar
Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, (1998). [DOI], [ADS], [arXiv:gr-qc/9810065]. (Cited on page 31.)
ADS
MathSciNet
MATH
Article
Google Scholar
Baumgarte, T.W. and Shapiro, S.L., Numerical Relativity: Solving Einstein’s Equations on the Computer, (Cambridge University Press, Cambridge; New York, 2010). [Google Books]. (Cited on page 10.)
MATH
Book
Google Scholar
Bernal, A., Barranco, J., Alic, D. and Palenzuela, C., “Multistate boson stars”, Phys. Rev. D, 81, 044031, (2010). [DOI], [ADS], [arXiv:0908.2435 [gr-qc]]. (Cited on pages 25 and 26.)
ADS
Article
Google Scholar
Bernal, A. and Guzmán, F.S., “Scalar field dark matter: Head-on interaction between two structures”, Phys. Rev. D, 74, 103002, (2006). [DOI], [ADS], [arXiv:astro-ph/0610682]. (Cited on pages 34 and 35.)
ADS
Article
Google Scholar
Bernal, A. and Guzmán, F.S., “Scalar field dark matter: Nonspherical collapse and late-time behavior”, Phys. Rev. D, 74, 063504, (2006). [DOI], [ADS], [arXiv:astro-ph/0608523]. (Cited on page 18.)
ADS
Article
Google Scholar
Berti, E. and Cardoso, V., “Supermassive Black Holes or Boson Stars? Hair Counting with Gravitational Wave Detectors”, Int. J. Mod. Phys. D, 15, 2209–2216, (2006). [DOI], [ADS], [arXiv:gr-qc/0605101]. (Cited on page 40.)
ADS
MathSciNet
MATH
Article
Google Scholar
Bhatt, J.R. and Sreekanth, V., “Boson stars: Chemical potential and quark condensates”, arXiv, e-print, (2009). [ADS], [arXiv:0910.1972 [hep-ph]]. (Cited on page 17.)
Bičák, J., Scholtz, M. and Tod, P., “On asymptotically flat solutions of Einstein’s equations periodic in time II. Spacetimes with scalar-field sources”, Class. Quantum Grav., 27, 175011, (2010). [DOI], [arXiv:1008.0248 [gr-qc]]. (Cited on page 42.)
ADS
MATH
Article
Google Scholar
Bizoń, P. and Rostworowski, A., “On weakly turbulent instability of anti-de Sitter space”, Phys. Rev. Lett., 107, 031102, (2011). [DOI], [arXiv:1104.3702 [gr-qc]]. (Cited on page 46.)
ADS
Article
Google Scholar
Boehle, A., Ghez, A., Schoedel, R., Yelda, S. and Meyer, L., “New Orbital Analysis of Stars at the Galactic Center Using Speckle Holography”, in AAS 219th Meeting, Austin, Texas, 8–12 January 2012, Bull. Am. Astron. Soc., 44, 252.01, (American Astronomical Society, Washington, DC, 2012). [ADS]. (Cited on page 40.)
Google Scholar
Bogolyubskiĭ, I.L. and Makhan’kov, V.G., “Dynamics of spherically symmetrical pulsons of large amplitude”, JETP Lett., 25, 107–110, (1977). [ADS]. (Cited on page 21.)
ADS
Google Scholar
Bona, C., Palenzuela, C. and Bona, C., Elements of Numerical Relativity and Relativistic Hydrodynamics: From Einstein’s Equations to Astrophysical Simulations, Lecture Notes in Physics, 783, (Springer, Berlin; New York, 2009), 2nd edition. [Google Books]. (Cited on page 10.)
MATH
Book
Google Scholar
Brady, P.R., Choptuik, M.W., Gundlach, C. and Neilsen, D.W., “Black-hole threshold solutions in stiff fluid collapse”, Class. Quantum Grav., 19, 6359–6376, (2002). [DOI], [arXiv:gr-qc/0207096]. (Cited on page 7.)
ADS
MathSciNet
MATH
Article
Google Scholar
Brihaye, Y., Caebergs, T. and Delsate, T., “Charged-spinning-gravitating Q-balls”, arXiv, e-print, (2009). [arXiv:0907.0913 [gr-qc]]. (Cited on page 20.)
Brihaye, Y., Caebergs, T., Hartmann, B. and Minkov, M., “Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls”, Phys. Rev. D, 80, 064014, (2009). [DOI], [ADS], [arXiv:0903.5419 [gr-qc]]. (Cited on page 26.)
ADS
Article
Google Scholar
Brihaye, Y. and Hartmann, B., “Angularly excited and interacting boson stars and Q balls”, Phys. Rev. D, 79, 064013, (2009). [DOI], [ADS], [arXiv:0812.3968 [hep-ph]]. (Cited on page 26.)
ADS
MathSciNet
Article
Google Scholar
Brihaye, Y., Hartmann, B. and Radu, E., “Boson stars in SU(2) Yang-Mills-scalar field theories”, Phys. Lett. B, 607, 17–26, (2005). [DOI], [arXiv:hep-th/0411207 [hep-th]]. (Cited on page 27.)
ADS
MathSciNet
MATH
Article
Google Scholar
Brihaye, Y. and Verbin, Y., “Spherical Structures in Conformal Gravity and its Scalar-Tensor Extension”, Phys. Rev. D, 80, 124048, (2009). [DOI], [arXiv:0907.1951 [gr-qc]]. (Cited on page 26.)
ADS
Article
Google Scholar
Brihaye, Y. and Verbin, Y., “Spherical Non-Abelian Solutions in Conformal Gravity”, Phys. Rev. D, 81, 044041, (2010). [DOI], [arXiv:0910.0973 [gr-qc]]. (Cited on pages 26 and 27.)
ADS
MathSciNet
Article
Google Scholar
Broderick, A.E., Loeb, A. and Reid, M.J., “Localizing Sagittarius A* and M87 on Microarcsecond Scales with Millimeter Very Long Baseline Interferometry”, Astrophys. J., 735, 57, (2011). [DOI], [ADS], [arXiv:1104.3146 [astro-ph.HE]]. (Cited on page 40.)
ADS
Article
Google Scholar
Broderick, A.E. and Narayan, R., “On the nature of the compact dark mass at the galactic center”, Astrophys. J., 638, L21–L24, (2006). [DOI], [arXiv:astro-ph/0512211 [astro-ph]]. (Cited on page 40.)
ADS
Article
Google Scholar
Cardoso, V., Pani, P., Cadoni, M. and Cavaglià, M., “Ergoregion instability of ultracompact astro-physical objects”, Phys. Rev. D, 77, 124044, (2008). [DOI], [ADS], [arXiv:0709.0532 [gr-qc]]. (Cited on pages 23, 29, 32, and 41.)
ADS
Article
Google Scholar
Chavanis, P.-H., “Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results”, Phys. Rev. D, 84, 043531, (2011). [DOI], [ADS], [arXiv:1103.2050 [astro-ph.CO]]. (Cited on page 18.)
ADS
MathSciNet
Article
Google Scholar
Chavanis, P.-H., “Growth of perturbations in an expanding universe with Bose-Einstein condensate darkmatter”, Astron. Astrophys., 537, A127, (2012). [DOI], [ADS], [arXiv:1103.2698 [astro-ph.CO]]. (Cited on page 18.)
ADS
Article
Google Scholar
Chavanis, P.-H. and Harko, T., “Bose-Einstein Condensate general relativistic stars”, arXiv, e-print, (2011). [ADS], [arXiv:1108.3986 [astro-ph.SR]]. (Cited on page 18.)
Cho, Y., Ozawa, T., Sasaki, H. and Shim, Y., “Remarks on the semirelativistic Hartree equations”, Discrete Contin. Dyn. Syst. A, 23, 1277–1294, (2009). [DOI]. (Cited on page 42.)
MathSciNet
MATH
Google Scholar
Choi, D., Lai, C.W., Choptuik, M.W., Hirschmann, E.W., Liebling, S.L. and Pretorius, F., “Dynamics of Axisymmetric (Head-on) Boson Star Collisions”, in preparation, (2010). Online version (accessed 3 February 2012): http://bh0.physics.ubc.ca/Group/PapersInProgress.html. (Cited on pages 8 and 44.)
Choi, D.-I., Numerical Studies of Nonlinear Schrödinger and Klein-Gordon Systems: Techniques and Applications, Ph.D. thesis, (The University of Texas, Austin, 1998). [ADS]. Online version (accessed 3 February 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on pages 33 and 34.)
Google Scholar
Choi, D.-I., “Collision of gravitationally bound Bose-Einstein condensates”, Phys. Rev. A, 66, 063609, (2002). [DOI], [ADS]. (Cited on pages 34 and 44.)
ADS
Article
Google Scholar
Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). [DOI], [ADS]. (Cited on page 42.)
ADS
Article
Google Scholar
Choptuik, M.W., Chmaj, T. and Bizoń, P., “Critical Behavior in Gravitational Collapse of a Yang-Mills Field”, Phys. Rev. Lett., 77, 424–427, (1996). [DOI], [arXiv:gr-qc/9603051]. (Cited on page 44.)
ADS
Article
Google Scholar
Choptuik, M.W., Hirschmann, E.W. and Marsa, R.L., “New critical behavior in Einstein-Yang-Mills collapse”, Phys. Rev. D, 60, 124011, (1999). [DOI], [arXiv:gr-qc/9903081]. (Cited on page 44.)
ADS
MathSciNet
Article
Google Scholar
Choptuik, M.W. and Pretorius, F., “Ultrarelativistic Particle Collisions”, Phys. Rev. Lett., 104, 111101, (2010). [DOI], [arXiv:0908.1780 [gr-qc]]. (Cited on pages 35 and 44.)
ADS
Article
Google Scholar
Coleman, S.R., “Q Balls”, Nucl. Phys. B, 262, 263, (1985). [DOI]. (Cited on page 17.)
ADS
Article
Google Scholar
Colpi, M., Shapiro, S.L. and Wasserman, I., “Boson stars: Gravitational equilibria of self-interacting scalar fields”, Phys. Rev. Lett., 57, 2485–2488, (1986). [DOI], [ADS]. (Cited on pages 15 and 16.)
ADS
MathSciNet
Article
Google Scholar
Contaldi, C.R., Wiseman, T. and Withers, B., “TeVeS gets caught on caustics”, Phys. Rev. D, 78, 044034, (2008). [DOI], [ADS], [arXiv:0802.1215 [gr-qc]]. (Cited on page 27.)
ADS
Article
Google Scholar
Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5, (2000). [gr-qc/0007085]. URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-2000-5. (Cited on page 14.)
Cook, G.B., Shapiro, S.L. and Teukolsky, S.A., “Rapidly rotating neutron stars in general relativity: Realistic equations of state”, Astrophys. J., 424, 823–845, (1994). [DOI], [ADS]. (Cited on pages 28 and 29.)
ADS
Article
Google Scholar
Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 128–198, (Cambridge University Press, Cambridge; New York, 1987). [ADS]. (Cited on pages 33 and 37.)
Google Scholar
Damour, T. and Esposito-Farèse, G., “Tensor-scalar gravity and binary-pulsar experiments”, Phys. Rev. D, 54, 1474–1491, (1996). [DOI], [arXiv:gr-qc/9602056]. (Cited on page 26.)
ADS
Article
Google Scholar
Dariescu, C. and Dariescu, M.-A., “Boson Nebulae Charge”, Chinese Phys. Lett., 27, 011101, (2010). [DOI], [ADS]. (Cited on page 19.)
Article
Google Scholar
de Lavallaz, A. and Fairbairn, M., “Neutron stars as dark matter probes”, Phys. Rev. D, 81, 123521, (2010). [DOI]. (Cited on page 39.)
ADS
Article
Google Scholar
de Sousa, C.M.G., Silveira, V. and Fang, L.Z., “Slowly Rotating Boson-Fermion Star”, Int. J. Mod. Phys. D, 10, 881–892, (2001). [DOI], [ADS], [arXiv:gr-qc/0012020]. (Cited on page 25.)
ADS
MathSciNet
MATH
Article
Google Scholar
de Sousa, C.M.G., Tomazelli, J.L. and Silveira, V., “Model for stars of interacting bosons and fermions”, Phys. Rev. D, 58, 123003, (1998). [DOI], [ADS], [arXiv:gr-qc/9507043]. (Cited on page 23.)
ADS
Article
Google Scholar
Degura, Y., Sakamoto, K. and Shiraishi, K., “Black holes with scalar hair in (2+1)-dimensions”, Grav. Cosmol., 7, 153–158, (2001). [arXiv:gr-qc/9805011 [gr-qc]]. (Cited on page 45.)
ADS
MathSciNet
MATH
Google Scholar
Derrick, G.H., “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys., 5, 1252–254, (1964). [DOI]. (Cited on page 6.)
ADS
MathSciNet
Article
Google Scholar
Dias, O.J.C., Horowitz, G.T. and Santos, J.E., “Black holes with only one Killing field”, arXiv, e-print, (2011). [arXiv:1105.4167 [Black holes, Killing field]]. (Cited on pages 23, 41, 45, and 46.)
Dias, O.J.C., Horowitz, G.T. and Santos, J.E., “Gravitational Turbulent Instability of Anti-de Sitter Space”, arXiv, e-print, (2011). [arXiv:1109.1825 [hep-th]]. (Cited on pages 27 and 45.)
Doddato, F. and McDonald, J., “New Q-ball Solutions in Gauge-Mediation, Affleck-Dine Baryogenesis and Gravitino Dark Matter”, arXiv, e-print, (2011). [arXiv:1111.2305 [hep-ph]]. (Cited on page 41.)
Dzhunushaliev, V., Folomeev, V., Myrzakulov, R. and Singleton, D., “Non-singular solutions to Einstein-Klein-Gordon equations with a phantom scalar field”, J. High Energy Phys., 2008(07), 094, (2008). [DOI], [ADS], [arXiv:0805.3211 [gr-qc]]. (Cited on page 17.)
MathSciNet
Article
Google Scholar
Dzhunushaliev, V., Folomeev, V. and Singleton, D., “Chameleon stars”, Phys. Rev. D, 84, 084025, (2011). [DOI], [arXiv:1106.1267 [astro-ph.SR]]. (Cited on page 25.)
ADS
Article
Google Scholar
Dzhunushaliev, V., Myrzakulov, K. and Myrzakulov, R., “Boson Stars from a Gauge Condensate”, Mod. Phys. Lett. A, 22, 273–81, (2007). [DOI], [ADS], [arXiv:gr-qc/0604110]. (Cited on page 27.)
ADS
MathSciNet
MATH
Article
Google Scholar
Emparan, R. and Reall, H.S., “Black Holes in Higher Dimensions”, Living Rev. Relativity, 11, lrr-2008-6, (2008). URL (accessed 1 February 2012): http://rwww.livingreviews.org/lrr-2008-6. (Cited on page 45.)
Eto, M., Hashimoto, K., Iida, H. and Miwa, A., “Chiral Magnetic Effect from Q-balls”, arXiv, e-print, (2010). [arXiv:1012.3264 [hep-ph]]. (Cited on page 20.)
Famaey, B. and McGaugh, S., “Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions”, Living Rev. Relativity, 15, lrr-2012-, (2012). [arXiv:1112.3960 [astro-ph.CO]]. URL (accessed 7 May 2012): http://www.livingreviews.org. (Cited on page 27.)
Faraoni, V., “Correspondence between a scalar field and an effective perfect fluid”, Phys. Rev. D, 85, 024040, (2012). [DOI], [arXiv:1201.1448 [gr-qc]]. (Cited on page 7.)
ADS
Article
Google Scholar
Fodor, G., Forgáacs, P., Horváath, Z. and Lukacs, A., “Small amplitude quasi-breathers and oscillons”, Phys. Rev. D, 78, 025003, (2008). [DOI], [arXiv:0802.3525 [hep-th]]. (Cited on page 21.)
ADS
Article
Google Scholar
Fodor, G., Forgáacs, P., Horváath, Z. and Mezei, M., “Computation of the radiation amplitude of oscillons”, Phys. Rev. D, 79, 065002, (2009). [DOI], [arXiv:0812.1919 [hep-th]]. (Cited on page 21.)
ADS
Article
Google Scholar
Fodor, G., Forgáacs, P., Horváath, Z. and Mezei, M., “Oscillons in dilaton-scalar theories”, J. High Energy Phys., 2009(08), 106, (2009). [DOI], [arXiv:0906.4160 [hep-th]]. (Cited on page 21.)
Article
Google Scholar
Fodor, G., Forgáacs, P., Horváath, Z. and Mezei, M., “Radiation of scalar oscillons in 2 and 3 dimensions”, Phys. Lett. B, 674, 319–324, (2009). [DOI], [ADS], [arXiv:0903.0953 [hep-th]]. (Cited on page 21.)
ADS
Article
Google Scholar
Fodor, G., Forgács, P. and Mezei, M., “Boson stars and oscillatons in an inflationary universe”, Phys. Rev. D, 82, 044043, (2010). [DOI], [ADS], [arXiv:1007.0388 [gr-qc]]. (Cited on page 45.)
ADS
Article
Google Scholar
Fodor, G., Forgáacs, P. and Mezei, M., “Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D-dimensions”, Phys. Rev. D, 81, 064029, (2010). [DOI], [arXiv:0912.5351 [gr-qc]]. (Cited on pages 21 and 45.)
ADS
Article
Google Scholar
Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7, (2008). URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-2008-7. (Cited on page 24.)
Font, J.A. et al., “Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars”, Phys. Rev. D, 65, 084024, (2002). [DOI], [ADS], [arXiv:gr-qc/0110047]. (Cited on page 28.)
ADS
MathSciNet
Article
Google Scholar
Frank, R.L. and Lenzmann, E., “On ground states for the L2-critical boson star equation”, arXiv, e-print, (2009). [ADS], [arXiv:0910.2721 [math.AP]]. (Cited on page 42.)
Frank, R.L. and Lenzmann, E., “Uniqueness of ground states for the L2-critical boson star equation”, arXiv, e-print, (2009). [ADS], [arXiv:0905.3105 [math.AP]]. (Cited on page 42.)
Friedberg, R., Lee, T.D. and Pang, Y., “Mini-soliton stars”, Phys. Rev. D, 35, 3640–3657, (1987). [DOI], [ADS]. (Cited on pages 12 and 17.)
ADS
Article
Google Scholar
Friedberg, R., Lee, T.D. and Pang, Y., “Scalar soliton stars and black holes”, Phys. Rev. D, 35, 3658–3677, (1987). [DOI], [ADS]. (Cited on page 17.)
ADS
Article
Google Scholar
Friedman, J.L., Ipser, J.R. and Sorkin, R.D., “Turning-point method for axisymmetric stability of rotating relativistic stars”, Astrophys. J., 325, 722–724, (1988). [DOI], [ADS]. (Cited on pages 28 and 29.)
ADS
Article
Google Scholar
Gentle, S.A., Rangamani, M. and Withers, B., “A soliton menagerie in AdS”, arXiv, e-print, (2011). [ADS], [arXiv:1112.3979 [hep-th]]. (Cited on page 46.)
Gleiser, M., “Stability of boson stars”, Phys. Rev. D, 38, 2376–2385, (1988). [DOI], [ADS]. (Cited on page 28.)
ADS
Article
Google Scholar
Gleiser, M. and Watkins, R., “Gravitational stability of scalar matter”, Nucl. Phys. B, 319, 733–746, (1989). [DOI], [ADS]. (Cited on page 29.)
ADS
Article
Google Scholar
González, J.A. and Guzmán, F.S., “Interference pattern in the collision of structures in the Bose-Einstein condensate dark matter model: Comparison with fluids”, Phys. Rev. D, 83, 103513, (2011).[DOI], [ADS], [arXiv:1105.2066 [astro-ph.CO]]. (Cited on page 44.)
ADS
Article
Google Scholar
Gourgoulhon, E., “3+1 Formalism and Bases of Numerical Relativity”, arXiv, e-print, (2007). [arXiv:gr-qc/0703035 [GR-QC]]. (Cited on page 10.)
Grandclément, P., Fodor, G. and Forgács, P., “Numerical simulation of oscillatons: Extracting the radiating tail”, Phys. Rev. D, 84, 065037, (2011). [DOI]. (Cited on page 21.)
ADS
Article
Google Scholar
Guenther, R.L., A Numerical Study of the Time Dependent Schrödinger Equation Coupled with Newtonian Gravity, Ph.D. thesis, (The University of Texas, Austin, 1995). [ADS]. Online version (accessed 3 February 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on page 18.)
Google Scholar
Gundlach, C. and Leveque, R.J., “Universality in the run-up of shock waves to the surface of a star”, J. Fluid Mech., 676, 237–264, (2011). [DOI], [arXiv:1008.2834 [astro-ph.SR]]. (Cited on page 39.)
ADS
MathSciNet
MATH
Article
Google Scholar
Gundlach, C. and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 10, lrr-2007-5, (2007). [arXiv:0711.4620 [gr-qc]]. URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-2007-5. (Cited on page 42.)
Gundlach, C. and Please, C., “Generic behaviour of nonlinear sound waves near the surface of a star: Smooth solutions”, Phys. Rev. D, 79, 067501, (2009). [DOI], [arXiv:0901.4928astro-ph.SR]]. (Cited on page 39.)
ADS
Article
Google Scholar
Guzmáan, F.S., “Evolving spherical boson stars on a 3D Cartesian grid”, Phys. Rev. D, 70, 044033, (2004). [DOI], [ADS], [arXiv:gr-qc/0407054]. (Cited on page 31.)
ADS
MathSciNet
Article
Google Scholar
Guzmán, F.S., “Scalar fields: At the threshold of astrophysics”, J. Phys.: Conf. Ser., 91, 012003, (2007). [DOI]. (Cited on page 40.)
ADS
Google Scholar
Guzmán, F.S., “The three dynamical fates of Boson Stars”, Rev. Mex. Fis., 55, 321–326, (2009). URL (accessed 3 February 2012): http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2009000400011&nrm=iso. (Cited on page 32.)
Google Scholar
Guzmán, F.S. and Rueda-Becerril, J.M., “Spherical boson stars as black hole mimickers”, Phys. Rev. D, 80, 084023, (2009). [DOI], [ADS], [arXiv:1009.1250 [astro-ph.HE]]. (Cited on page 40.)
ADS
Article
Google Scholar
Guzmán, F.S. and Ureña-López, L.A., “Gravitational Cooling of Self-gravitating Bose Condensates”, Astrophys. J., 645, 814–819, (2006). [DOI], [ADS], [arXiv:astro-ph/0603613]. (Cited on page 18.)
ADS
Article
Google Scholar
Harrison, B.K., Thorne, K.S., Wakano, M. and Wheeler, J.A., Gravitation Theory and Gravitational Collapse, (University of Chicago Press, Chicago, 1965). [ADS]. (Cited on page 29.)
Google Scholar
Hartmann, B., Kleihaus, B., Kunz, J. and List, M., “Rotating boson stars in five dimensions”, Phys. Rev. D, 82, 084022, (2010). [DOI], [arXiv:1008.3137 [gr-qc]]. (Cited on page 45.)
ADS
Article
Google Scholar
Hawley, S.H. and Choptuik, M.W., “Boson stars driven to the brink of black hole formation”, Phys. Rev. D, 62, 104024, (2000). [DOI], [arXiv:gr-qc/0007039]. (Cited on page 42.)
ADS
Article
Google Scholar
Hawley, S.H. and Choptuik, M.W., “Numerical evidence for ‘multiscalar stars’”, Phys. Rev. D, 67, 024010, (2003). [DOI], [arXiv:gr-qc/0208078]. (Cited on page 26.)
ADS
Article
Google Scholar
Henriques, A.B., Liddle, A.R. and Moorhouse, R.G., “Combined boson-fermion stars”, Phys. Lett. B, 233, 99–106, (1989). [DOI], [ADS]. (Cited on page 23.)
ADS
Article
Google Scholar
Henriques, A.B., Liddle, A.R. and Moorhouse, R.G., “Combined boson-fermion stars: Configurations and stability”, Nucl. Phys. B, 337, 737–761, (1990). [DOI], [ADS]. (Cited on page 23.)
ADS
Article
Google Scholar
Heusler, M., “Stationary Black Holes: Uniqueness and Beyond”, Living Rev. Relativity, 1, lrr-1998-6, (1998). URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-1998-6. (Cited on page 20.)
Hod, S., “Quasinormal resonances of a massive scalar field in a near-extremal Kerr black hole spacetime”, Phys. Rev. D, 84, 044046, (2011). [DOI], [arXiv:1109.4080 [gr-qc]]. (Cited on page 40.)
ADS
Article
Google Scholar
Honda, E.P., Resonant Dynamics within the nonlinear Klein-Gordon Equation: Much ado about Oscillons, Ph.D. thesis, (The University of Texas, Austin, 2000). [ADS], [arXiv:hep-ph/0009104 [hep-ph]]. Online version (accessed 2 May 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on page 21.)
Google Scholar
Honda, E.P., “Fractal boundary basins in spherically symmetric Φ4 theory”, Phys. Rev. D, 82, 024038, (2010). [DOI], [arXiv:1006.2421 [gr-qc]]. (Cited on page 21.)
ADS
Article
Google Scholar
Honda, E.P. and Choptuik, M.W., “Fine structure of oscillons in the spherically symmetric Φ4 Klein-Gordon model”, Phys. Rev. D, 65, 084037, (2002). [DOI], [arXiv:hep-ph/0110065 [hep-ph]]. (Cited on page 21.)
ADS
MathSciNet
Article
Google Scholar
Jetzer, P., “Dynamical instability of bosonic stellar configurations”, Nucl. Phys. B, 316, 411–428, (1989). [DOI], [ADS]. (Cited on page 28.)
ADS
Article
Google Scholar
Jetzer, P., “Stability of charged boson stars”, Phys. Lett. B, 231, 433–438, (1989). [DOI], [ADS]. (Cited on page 19.)
ADS
Article
Google Scholar
Jetzer, P., “Stability of excited bosonic stellar configurations”, Phys. Lett. B, 222, 447–452, (1989). [DOI], [ADS]. (Cited on page 29.)
ADS
Article
Google Scholar
Jetzer, P., “Stability of combined boson-fermion stars”, Phys. Lett. B, 243, 36–40, (1990). [DOI], [ADS]. (Cited on page 25.)
ADS
Article
Google Scholar
Jetzer, P., “Boson stars”, Phys. Rep., 220, 163–227, (1992). [DOI]. (Cited on pages 7 and 29.)
ADS
Article
Google Scholar
Jetzer, P. and van der Bij, J.J., “Charged boson stars”, Phys. Lett. B, 227, 341–346, (1989). [DOI], [ADS]. (Cited on pages 18, 19, and 20.)
ADS
Article
Google Scholar
Jin, K.-J. and Suen, W.-M., “Critical Phenomena in Head-on Collisions of Neutron Stars”, Phys. Rev. Lett., 98, 131101, (2007). [DOI], [gr-qc/0603094]. (Cited on page 44.)
ADS
Article
Google Scholar
Kasuya, S. and Kawasaki, M., “Q-ball formation through the Affleck-Dine mechanism”, Phys. Rev. D, 61, 041301, (2000). [DOI], [ADS], [arXiv:hep-ph/9909509]. (Cited on page 17.)
ADS
Article
Google Scholar
Kaup, D.J., “Klein-Gordon Geon”, Phys. Rev., 172, 1331–1342, (1968). [DOI]. (Cited on pages 5 and 6.)
ADS
Article
Google Scholar
Kellermann, T., Rezzolla, L. and Radice, D., “Critical phenomena in neutron stars: II. Head-on collisions”, Class. Quantum Grav., 27, 235016, (2010). [DOI], [arXiv:1007.2797 [gr-qc]]. (Cited on page 44.)
ADS
MathSciNet
MATH
Article
Google Scholar
Kesden, M., Gair, J. and Kamionkowski, M., “Gravitational-wave signature of an inspiral into a supermassive horizonless object”, Phys. Rev. D, 71, 044015, (2005). [DOI], [arXiv:astro-ph/0411478 [astro-ph]]. (Cited on page 40.)
ADS
Article
Google Scholar
Kichenassamy, S., “Soliton stars in the breather limit”, Class. Quantum Grav., 25, 245004, (2008). [DOI], [ADS]. (Cited on page 21.)
ADS
MathSciNet
MATH
Article
Google Scholar
Kiessling, M.K.-H., “Monotonicity of Quantum Ground State Energies: Bosonic Atoms and Stars”, J. Stat. Phys., 137, 1063–1078, (2009). [DOI], [ADS], [arXiv:1001.4280 [math-ph]]. (Cited on page 18.)
ADS
MathSciNet
MATH
Article
Google Scholar
Kleihaus, B., Kunz, J., Lämmerzahl, C. and List, M., “Charged boson stars and black holes”, Phys. Lett. B, 675, 102–109, (2009). [DOI], [ADS], [arXiv:0902.4799 [gr-qc]]. (Cited on page 19.)
ADS
MathSciNet
Article
Google Scholar
Kleihaus, B., Kunz, J., Lämmerzahl, C. and List, M., “Boson shells harboring charged black holes”, Phys. Rev. D, 82, 104050, (2010). [DOI], [ADS], [arXiv:1007.1630 [gr-qc]]. (Cited on page 19.)
ADS
Article
Google Scholar
Kleihaus, B., Kunz, J. and List, M., “Rotating boson stars and Q-balls”, Phys. Rev. D, 72, 064002, (2005). [DOI], [ADS], [arXiv:gr-qc/0505143]. (Cited on page 17.)
ADS
MathSciNet
Article
Google Scholar
Kleihaus, B., Kunz, J., List, M. and Schaffer, I., “Rotating boson stars and Q-balls. II. Negative parity and ergoregions”, Phys. Rev. D, 77, 064025, (2008). [DOI], [ADS], [arXiv:0712.3742 [gr-qc]]. (Cited on page 17.)
ADS
MathSciNet
Article
Google Scholar
Kleihaus, B., Kunz, J. and Schneider, S., “Stable Phases of Boson Stars”, arXiv, e-print, (2011). [arXiv:1109.5858 [gr-qc]]. (Cited on pages 17, 23, 29, and 32.)
Kobayashi, Y., Kasai, M. and Futamase, T., “Does a boson star rotate?”, Phys. Rev. D, 50, 7721–7724, (1994). [DOI]. (Cited on page 25.)
ADS
Article
Google Scholar
Kouvaris, C. and Tinyakov, P.G., “Can neutron stars constrain dark matter?”, Phys. Rev. D, 82, 063531, (2010). [DOI]. (Cited on page 39.)
ADS
Article
Google Scholar
Kunz, J., Navarro-Lerida, F. and Viebahn, J., “Charged rotating black holes in odd dimensions”, Phys. Lett. B, 639, 362–367, (2006). [DOI], [arXiv:hep-th/0605075 [hep-th]]. (Cited on page 45.)
ADS
MathSciNet
MATH
Article
Google Scholar
Kusenko, A. and Steinhardt, P.J., “Q-Ball Candidates for Self-Interacting Dark Matter”, Phys. Rev. Lett., 87, 141301, (2001). [DOI], [ADS], [arXiv:astro-ph/0106008]. (Cited on page 17.)
ADS
Article
Google Scholar
Kusmartsev, F.V., Mielke, E.W. and Schunck, F.E., “Gravitational Stability of Boson Stars”, Phys. Rev. D, 43, 3895–3901, (1991). [DOI], [arXiv:0810.0696 [astro-ph]]. (Cited on page 29.)
ADS
MathSciNet
Article
Google Scholar
Lai, C.W., A Numerical Study of Boson Stars, Ph.D. thesis, (The University of British Columbia, Vancouver, 2004). [ADS], [arXiv:gr-qc/0410040]. Online version (accessed 3 February 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on pages 8, 11, 14, 23, 24, 35, 43, and 44.)
Google Scholar
Lai, C.W. and Choptuik, M.W., “Final fate of subcritical evolutions of boson stars”, arXiv, e-print, (2007). [arXiv:0709.0324 [gr-qc]]. (Cited on pages 32 and 43.)
Landsberg, G.L., “Black Holes at Future Colliders and Beyond”, J. Phys. G: Nucl. Part. Phys., 32, R337–R365, (2006). [DOI], [arXiv:hep-ph/0607297 [hep-ph]]. (Cited on page 44.)
ADS
Article
Google Scholar
Lee, J.W. and Lim, S., “Minimum mass of galaxies from BEC or scalar field dark matter”, J. Cosmol. Astropart. Phys., 2010(01), 007, (2010). [DOI]. (Cited on page 41.)
Article
Google Scholar
Lee, J.-W., “Is dark matter a BEC or scalar field?”, J. Korean Phys. Soc., 54, (2010). [arXiv:0801.1442 [astro-ph]]. (Cited on page 41.)
Lee, J.-W., Lim, S. and Choi, D., “BEC dark matter can explain collisions of galaxy clusters”, arXiv, e-print, (2008). [arXiv:0805.3827 [hep-ph]]. (Cited on page 41.)
Lee, T.D., “Soliton stars and the critical masses of black holes”, Phys. Rev. D, 35, 3637–3639, (1987). [DOI], [ADS]. (Cited on page 17.)
ADS
Article
Google Scholar
Lee, T.D. and Pang, Y., “Stability of mini-boson stars”, Nucl. Phys. B, 315, 477–516, (1989). [DOI], [ADS]. (Cited on pages 28 and 29.)
ADS
Article
Google Scholar
Lee, T.D. and Pang, Y., “Nontopological solitons”, Phys. Rep., 221, 251–350, (1992). [DOI], [ADS]. (Cited on pages 7 and 17.)
ADS
MathSciNet
Article
Google Scholar
Lenzmann, E., “Uniqueness of ground states for pseudorelativistic Hartree equations”, Analysis & PDE, 2, 1–27, (2009). [DOI]. (Cited on page 42.)
MathSciNet
MATH
Article
Google Scholar
Lenzmann, E. and Lewin, M., “On singularity formation for the L2-critical Boson star equation”, Nonlinearity, 24, 3515–3540, (2011). [DOI], [ADS], [arXiv:1103.3140 [math.AP]]. (Cited on page 42.)
ADS
MathSciNet
MATH
Article
Google Scholar
Liddle, A.R. and Madsen, M.S., “The Structure and Formation of Boson Stars”, Int. J. Mod. Phys. D, 1, 101–143, (1992). [DOI], [ADS]. (Cited on page 7.)
ADS
MATH
Article
Google Scholar
Lora-Clavijo, F.D., Cruz-Osorio, A. and Guzmán, F.S., “Evolution of a massless test scalar field on boson star space-times”, Phys. Rev. D, 82, 023005, (2010). [DOI], [ADS], [arXiv:1007.1162 [gr-qc]]. (Cited on page 40.)
ADS
Article
Google Scholar
Lue, A. and Weinberg, E.J., “Gravitational properties of monopole spacetimes near the black hole threshold”, Phys. Rev. D, 61, 124003, (2000). [DOI], [arXiv:hep-th/0001140 [hep-th]]. (Cited on page 19.)
ADS
MathSciNet
Article
Google Scholar
Lynn, B.W., “Q-stars”, Nucl. Phys., 321, 465–480, (1989). [DOI]. (Cited on page 17.)
ADS
Article
Google Scholar
Maldacena, J.M., “The Large-N Limit of Superconformal Field Theories and Supergravity”, Adv. Theor. Math. Phys., 2, 231–252, (1998). [DOI], [arXiv:hep-th/9711200 [hep-th]]. (Cited on page 45.)
ADS
MathSciNet
MATH
Article
Google Scholar
“Maple: Math and Engineering Software by Maplesoft”, institutional homepage, Maplesoft. URL (accessed 2 May 2012): http://www.maplesoft.com. (Cited on page 19.)
Mazur, P.O. and Mottola, E., “Gravitational condensate stars: An alternative to black holes”, arXiv, e-print, (2001). [arXiv:gr-qc/0109035]. (Cited on page 40.)
McGreevy, J., “Holographic Duality with a View Toward Many-Body Physics”, Adv. High Energy Phys., 2010, 723105, (2010). [DOI], [arXiv:0909.0518 [hep-th]]. (Cited on page 45.)
MATH
Article
Google Scholar
Michelangeli, A. and Schlein, B., “Dynamical Collapse of Boson Stars”, Commun. Math. Phys., 311, 645–687, (2012). [DOI], [ADS], [arXiv:1005.3135 [math-ph]]. (Cited on page 18.)
ADS
MathSciNet
MATH
Article
Google Scholar
Mielke, E.W. and Scherzer, R., “Geon-type solutions of the nonlinear Heisenberg-Klein-Gordon equation”, Phys. Rev. D, 24, 2111–2126, (1981). [DOI]. (Cited on page 15.)
ADS
Article
Google Scholar
Mielke, E.W. and Schunck, F.E., “Boson Stars: Early History and Recent Prospects”, in Piran, T. and Ruffini, R., eds., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, 22–27 June 1997, pp. 1607–1626, (World Scientific, Singapore, 1999). [arXiv:gr-qc/9801063]. (Cited on page 7.)
Google Scholar
Mielke, E.W. and Schunck, F.E., “Boson and Axion Stars”, in Gurzadyan, V.G., Jantzen, R.T. and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories, Proceedings of the MGIX MM meeting held at the University of Rome ‘La Sapienza’, 2–8 July 2000, pp. 581–591, (World Scientific, Singapore, 2002). (Cited on page 7.)
Chapter
Google Scholar
Milgrom, M., “A modification of the Newtonian dynamics: Implications for galaxies”, Astrophys. J., 270, 371–383, (1983). [DOI], [ADS]. (Cited on page 27.)
ADS
Article
Google Scholar
Milgrom, M., “MOND — Particularly as Modified Inertia”, Acta Phys. Pol. B, 42, 2175–2184, (2011). [DOI], [arXiv:1111.1611 [astro-ph.CO]]. (Cited on page 27.)
Article
Google Scholar
Millward, R.S. and Hirschmann, E.W., “Critical behavior of gravitating sphalerons”, Phys. Rev. D, 68, 024017, (2003). [DOI], [arXiv:gr-qc/0212015]. (Cited on page 44.)
ADS
Article
Google Scholar
Mundim, B.C., A Numerical Study of Boson Star Binaries, Ph.D. thesis, (The University of British Columbia, Vancouver, 2010). [ADS], [arXiv:1003.0239 [gr-qc]]. Online version (accessed 3 February 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on pages 32, 38, and 44.)
Google Scholar
Murariu, G., Dariescu, C. and Dariescu, M.-A., “MAPLE Routines for Bosons on Curved Manifolds”, Rom. J. Phys., 53, 99–108, (2008). (Cited on page 19.)
Google Scholar
Murariu, G. and Puscasu, G., “Solutions for Maxwell-equations’ system in a static conformal spacetime”, Rom. J. Phys., 55, 47–52, (2010). (Cited on page 19.)
MathSciNet
MATH
Google Scholar
Myers, R.C. and Perry, M.J., “Black Holes in Higher Dimensional Space-Times”, Ann. Phys. (N.Y.), 172, 304, (1986). [DOI]. (Cited on page 45.)
ADS
MathSciNet
MATH
Article
Google Scholar
Núñez, D., Degollado, J.C. and Moreno, C., “Gravitational waves from scalar field accretion”, Phys. Rev. D, 84, 024043, (2011). [DOI], [ADS], [arXiv:1107.4316 [gr-qc]]. (Cited on page 39.)
ADS
Article
Google Scholar
Page, D.N., “Classical and quantum decay of oscillations: Oscillating self-gravitating real scalar field solitons”, Phys. Rev. D, 70, 023002, (2004). [DOI], [ADS], [arXiv:gr-qc/0310006]. (Cited on page 21.)
ADS
Article
Google Scholar
Palenzuela, C., Lehner, L. and Liebling, S.L., “Orbital dynamics of binary boson star systems”, Phys. Rev. D, 77, 044036, (2008). [DOI], [arXiv:0706.2435 [gr-qc]]. (Cited on pages 32, 37, and 39.)
ADS
Article
Google Scholar
Palenzuela, C., Olabarrieta, I., Lehner, L. and Liebling, S.L., “Head-on collisions of boson stars”, Phys. Rev. D, 75, 064005, (2007). [DOI], [arXiv:gr-qc/0612067]. (Cited on pages 36 and 39.)
ADS
Article
Google Scholar
Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar”, Phys. Rev. D, 80, 124047, (2009). [DOI], [ADS], [arXiv:0909.0287 [gr-qc]]. (Cited on page 41.)
ADS
Article
Google Scholar
Pani, P., Berti, E., Cardoso, V. and Read, J., “Compact stars in alternative theories of gravity. Einstein-Dilaton-Gauss-Bonnet gravity”, arXiv, e-print, (2011). [arXiv:1109.0928 [gr-qc]]. (Cited on page 26.)
Park, S.C., “Black holes and the LHC: A review”, arXiv, e-print, (2012). [arXiv:1203.4683 [hep-ph]]. (Cited on page 44.)
Pena, I. and Sudarsky, D., “Do collapsed boson stars result in new types of black holes?”, Class. Quantum Grav., 14, 3131–3134, (1997). [DOI]. (Cited on page 41.)
ADS
MathSciNet
MATH
Article
Google Scholar
Petryk, R.J.W., Maxwell-Klein-Gordon Fields in Black Hole Spacetimes, Ph.D. thesis, (The University of British Columbia, Vancouver, 2005). [ADS]. Online version (accessed 3 February 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on page 18.)
Google Scholar
Pisano, F. and Tomazelli, J.L., “Stars of WIMPs”, Mod. Phys. Lett. A, 11, 647–651, (1996). [DOI], [ADS], [arXiv:gr-qc/9509022]. (Cited on page 23.)
ADS
Article
Google Scholar
Polchinski, J., “Introduction to Gauge/Gravity Duality”, arXiv, e-print, (2010). [arXiv:1010.6134 [hep-th]]. (Cited on page 45.)
Power, E.A. and Wheeler, J.A., “Thermal Geons”, Rev. Mod. Phys., 29, 480–495, (1957). [DOI]. (Cited on page 5.)
ADS
MathSciNet
MATH
Article
Google Scholar
Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, Living Rev. Relativity, 11, lrr-2008-9, (2008). [arXiv:0806.1531 [astro-ph]]. URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-2008-9. (Cited on page 40.)
Reich, E.S., “Detectors home in on Higgs boson”, Nature, 480, 301, (2011). [DOI]. (Cited on page 6.)
ADS
Article
Google Scholar
Rindler-Daller, T. and Shapiro, P.R., “Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes”, arXiv, e-print, (2011). [arXiv:1106.1256 [astro-ph.CO]]. (Cited on page 41.)
Rosen, G., “Existence of Particlelike Solutions to Nonlinear Field Theories”, J. Math. Phys., 7, 2066–2070, (1966). [DOI], [ADS]. (Cited on page 6.)
ADS
Article
Google Scholar
Rousseau, B., Axisymmetric Boson Stars in the Conformally Flat Approximation, Master’s thesis, (The University of British Columbia, Vancouver, 2003). Online version (accessed 3 February 2012): http://laplace.physics.ubc.ca/Members/matt/Doc/Theses/. (Cited on page 43.)
Google Scholar
Ruffini, R. and Bonazzola, S., “Systems of Self-Gravitating Particles in General Relativity and the Concept of an Equation of State”, Phys. Rev., 187, 1767–1783, (1969). [DOI]. (Cited on pages 6 and 10.)
ADS
Article
Google Scholar
Ryder, L.H., Quantum Field Theory, (Cambridge University Press, Cambridge; New York, 1996), 2nd edition. (Cited on page 6.)
MATH
Book
Google Scholar
Sakai, N. and Tamaki, T., “What happens to Q-balls if Q is so large?”, arXiv, e-print, (2011). [arXiv:1112.5559 [gr-qc]]. (Cited on page 19.)
Sakamoto, K. and Shiraishi, K., “Boson stars with large selfinteraction in (2+1)-dimensions: An Exact solution”, J. High Energy Phys., 1998(07), 015, (1998). [DOI], [arXiv:gr-qc/9804067 [gr-qc]]. (Cited on page 45.)
MathSciNet
MATH
Article
Google Scholar
Sakamoto, K. and Shiraishi, K., “Exact solutions for boson fermion stars in (2+1)-dimensions”, Phys. Rev. D, 58, 124017, (1998). [DOI], [arXiv:gr-qc/9806040 [gr-qc]]. (Cited on page 45.)
ADS
MathSciNet
Article
Google Scholar
Schunck, F.E. and Mielke, E.W., “Rotating boson stars”, in Hehl, F.W., Puntigam, R.A. and Ruder, H., eds., Relativity and Scientific Computing: Computer Algebra, Numerics, Visualization, 152nd WE-Heraeus seminar on Relativity and Scientific Computing, Bad Honnef, Germany, September 18–22, 1995, pp. 138–151, (Springer, Berlin; New York, 1996). [ADS]. (Cited on page 21.)
Chapter
Google Scholar
Schunck, F.E. and Mielke, E.W., “General relativistic boson stars”, Class. Quantum Grav., 20, R301–R356, (2003). [DOI], [arXiv:0801.0307 [astro-ph]]. (Cited on pages 5, 7, and 27.)
ADS
MathSciNet
MATH
Article
Google Scholar
Schunck, F.E. and Torres, D.F., “Boson Stars with Generic Self-Interactions”, Int. J. Mod. Phys. D, 9, 601–618, (2000). [DOI], [ADS], [arXiv:gr-qc/9911038]. (Cited on page 15.)
ADS
Google Scholar
Seidel, E. and Suen, W.-M., “Dynamical evolution of boson stars: Perturbing the ground state”, Phys. Rev. D, 42, 384–403, (1990). [DOI], [ADS]. (Cited on pages 29, 30, and 31.)
ADS
Article
Google Scholar
Seidel, E. and Suen, W.-M., “Oscillating soliton stars”, Phys. Rev. Lett., 66, 1659–1662, (1991). [DOI], [ADS]. (Cited on page 20.)
ADS
Article
Google Scholar
Seidel, E. and Suen, W.-M., “Formation of solitonic stars through gravitational cooling”, Phys. Rev. Lett., 72, 2516–2519, (1994). [DOI], [ADS], [arXiv:gr-qc/9309015]. (Cited on pages 30, 32, and 33.)
ADS
Article
Google Scholar
Sharma, R., Karmakar, S. and Mukherjee, S., “Boson star and dark matter”, arXiv, e-print, (2008). [ADS], [arXiv:0812.3470 [gr-qc]]. (Cited on page 41.)
Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [DOI], [ADS]. (Cited on page 31.)
ADS
MathSciNet
MATH
Article
Google Scholar
Shibata, M. and Taniguchi, K., “Coalescence of Black Hole-Neutron Star Binaries”, Living Rev. Relativity, 14, lrr-2011-6, (2011). URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-2011-6. (Cited on page 39.)
Shibata, M. and Yoshino, H., “Bar-mode instability of rapidly spinning black hole in higher dimensions: Numerical simulation in general relativity”, Phys. Rev. D, 81, 104035, (2010). [DOI], [arXiv:1004.4970 [gr-qc]]. (Cited on page 45.)
ADS
Article
Google Scholar
Silveira, V. and de Sousa, C.M.G., “Boson star rotation: A Newtonian approximation”, Phys. Rev. D, 52, 5724–5728, (1995). [DOI], [ADS], [arXiv:astro-ph/9508034]. (Cited on pages 18 and 21.)
ADS
Article
Google Scholar
Stewart, I., “Catastrophe theory in physics”, Rep. Prog. Phys., 45, 185–221, (1982). [DOI]. (Cited on page 29.)
ADS
MathSciNet
Article
Google Scholar
Stojkovic, D., “Nontopological solitons in brane world models”, Phys. Rev. D, 67, 045012, (2003). [DOI], [arXiv:hep-ph/0111061 [hep-ph]]. (Cited on page 45.)
ADS
MathSciNet
Article
Google Scholar
Stotyn, S., Park, M., McGrath, P. and Mann, R.B., “Black Holes and Boson Stars with One Killing Field in Arbitrary Odd Dimensions”, Phys. Rev. D, 85, 044036, (2012). [DOI], [arXiv:1110.2223 [hep-th]]. (Cited on page 45.)
ADS
Article
Google Scholar
Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin; New York, 1984). [ADS]. (Cited on page 29.)
Book
Google Scholar
Straumann, N., “Fermion and boson stars”, in Ehlers, J. and Schäfer, G., eds., Relativistic gravity research with emphasis on experiments and observations, 81st WE-Heraeus Seminar, Aktuelle Entwicklungen in der Erforschung der relativistischen Gravitation, Bad Honnef, Germany, 2–6 September 1991, Lecture Notes in Physics, 410, (Springer, Berlin; New York, 1992). (Cited on page 7.)
Google Scholar
Tamaki, T. and Sakai, N., “Unified picture of Q-balls and boson stars via catastrophe theory”, Phys. Rev. D, 81, 124041, (2010). [DOI], [ADS], [arXiv:1105.1498 [gr-qc]]. (Cited on pages 17 and 29.)
ADS
Article
Google Scholar
Tamaki, T. and Sakai, N., “Gravitating Q-balls in the Affleck-Dine mechanism”, Phys. Rev. D, 83, 084046, (2011). [DOI], [ADS], [arXiv:1105.3810 [gr-qc]]. (Cited on page 29.)
ADS
Article
Google Scholar
Tamaki, T. and Sakai, N., “How does gravity save or kill Q-balls?”, Phys. Rev. D, 83, 044027, (2011). [DOI], [ADS], [arXiv:1105.2932 [gr-qc]]. (Cited on page 29.)
ADS
Article
Google Scholar
Tamaki, T. and Sakai, N., “What are universal features of gravitating Q-balls?”, Phys. Rev. D, 84, 044054, (2011). [DOI], [ADS], [arXiv:1108.3902 [gr-qc]]. (Cited on page 29.)
ADS
Article
Google Scholar
Thorne, K.S., “Nonspherical gravitational collapse — A short review”, in Klauder, J., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, 1972). [ADS]. (Cited on page 44.)
Google Scholar
Torres, D.F., Capozziello, S. and Lambiase, G., “Supermassive boson star at the galactic center?”, Phys. Rev. D, 62, 104012, (2000). [DOI], [ADS], [arXiv:astro-ph/0004064]. (Cited on page 40.)
ADS
Article
Google Scholar
Ureña-López, L.A. and Bernal, A., “Bosonic gas as a galactic dark matter halo”, Phys. Rev. D, 82, 123535, (2010). [DOI], [ADS], [arXiv:1008.1231 [gr-qc]]. (Cited on pages 26 and 41.)
ADS
Article
Google Scholar
Ureña-López, L.A., Matos, T. and Becerril, R., “Inside oscillatons”, Class. Quantum Grav., 19, 6259–6277, (2002). [DOI], [ADS]. (Cited on pages 20 and 21.)
ADS
MathSciNet
MATH
Article
Google Scholar
Valdez-Alvarado, S., Becerril, R. and Ureña-López, L.A., “Φ4 Oscillatons”, arXiv, e-print, (2011). [arXiv:1107.3135 [gr-qc]]. (Cited on page 21.)
Vilenkin, A. and Shellard, E.P.S., Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1994). (Cited on pages 6 and 19.)
MATH
Google Scholar
Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [ADS], [Google Books]. (Cited on pages 9 and 19.)
MATH
Book
Google Scholar
Wheeler, J.A., “Geons”, Phys. Rev., 97, 511–536, (1955). [DOI]. (Cited on page 5.)
ADS
MathSciNet
MATH
Article
Google Scholar
Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3, (2006). [arXiv:gr-qc/0510072]. URL (accessed 1 February 2012): http://www.livingreviews.org/lrr-2006-3. (Cited on page 26.)
Yoshida, S. and Eriguchi, Y., “Rotating boson stars in general relativity”, Phys. Rev. D, 56, 762–771, (1997). [DOI], [ADS]. (Cited on pages 21 and 23.)
ADS
MathSciNet
Article
Google Scholar
Yuan, Y.-F., Narayan, R. and Rees, M.J., “Constraining Alternate Models of Black Holes: Type I X-Ray Bursts on Accreting Fermion-Fermion and Boson-Fermion Stars”, Astrophys. J., 606, 1112–1124, (2004). [DOI], [ADS], [arXiv:astro-ph/0401549]. (Cited on page 40.)
ADS
Article
Google Scholar