Andersson, L., Beig, R. and Schmidt, B.G., “Static self-gravitating elastic bodies in Einstein gravity”, Commun. Pure Appl. Math., 61, 988–1023, (2008). [DOI]. (Cited on page 39.)
MathSciNet
MATH
Google Scholar
Andersson, L., Beig, R. and Schmidt, B.G., “Rotating elastic bodies in Einstein gravity”, Commun. Pure Appl. Math., 63, 559–589, (2009). [DOI]. (Cited on page 39.)
MathSciNet
MATH
Google Scholar
Andréasson, H., “Controlling the propagation of the support for the relativistic Vlasov equation with a selfconsistent Lorentz invariant field”, Indiana Univ. Math. J., 45, 617–642, (1996). [DOI]. (Cited on page 10.)
MathSciNet
MATH
Google Scholar
Andréasson, H., “Regularity of the gain term and strong L1 convergence to equilibrium for the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386–1405, (1996). [DOI]. (Cited on pages 7 and 8.)
MathSciNet
MATH
Google Scholar
Andréasson, H., “Global existence of smooth solutions in three dimensions for the semiconductor Vlasov-Poisson-Boltzmann equation”, Nonlinear Anal., 28, 1193–1211, (1997). [DOI]. (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Andréasson, H., “Global foliations of matter spacetimes with Gowdy symmetry”, Commun. Math. Phys., 206, 337–365, (1999). [DOI], [gr-qc/9812035]. (Cited on page 28.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., “On global existence for the spherically symmetric Einstein-Vlasov system in Schwarzschild coordinates”, Indiana Univ. Math. J., 56, 523–552, (2007). [DOI]. (Cited on page 20.)
MathSciNet
MATH
Google Scholar
Andréasson, H., “On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system”, Commun. Math. Phys., 274, 409–425, (2007). [DOI], [gr-qc/0605151]. (Cited on pages 32 and 36.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., “On the Buchdahl inequality for spherically symmetric static shells”, Commun. Math. Phys., 274, 399–408, (2007). [DOI], [gr-qc/0605097]. (Cited on page 36.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., “Sharp bounds on 2m/r of general spherically symmetric static objects”, J. Differ. Equations, 245, 2243–2266, (2008). [DOI]. (Cited on page 36.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., “Sharp bounds on the critical stability radius for relativistic charged spheres”, Commun. Math. Phys., 288, 715–730, (2009). [DOI], [arXiv:0804.1882]. (Cited on page 36.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., “Regularity results for the spherically symmteric Einstein-Vlasov system”, Ann. Henri Poincare, 11, 781–803, (2010). [DOI], [arXiv:1006.2248]. (Cited on pages 17, 18, 20, and 22.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H. and Böhmer, C.G., “Bounds on M/R for static objects with a positive cosmological constant”, Class. Quantum Grav., 26, 195007, 1–11, (2009). [DOI]. (Cited on page 37.)
MathSciNet
MATH
Google Scholar
Andréasson, H., Calogero, S. and Illner, R., “On Blowup for Gain-Term-Only classical and relativistic Boltzmann equations”, Math. Method. Appl. Sci., 27, 2231–2240, (2004). [DOI]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., Calogero, S. and Rein, G., “Global classical solutions to the spherically symmetric Nordström-Vlasov system”, Math. Proc. Camb. Phil. Soc., 138, 533–539, (2005). [DOI], [gr-qc/0311027]. (Cited on page 11.)
MATH
Google Scholar
Andréasson, H., Eklund, M. and Rein, G., “A numerical investigation of the steady states of the spherically symmetric Einstein-Vlasov-Maxwell system”, Class. Quantum Grav., 26, 145003, (2009). [DOI]. (Cited on page 36.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H., Kunze, M. and Rein, G., “Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter”, Commun. Part. Diff. Eq., 33, 656–668, (2008). [DOI]. (Cited on pages 17 and 19.)
MathSciNet
MATH
Google Scholar
Andréasson, H., Kunze, M. and Rein, G., “Existence of axially symmetric static solutions of the Einstein-Vlasov system”, Commun. Math. Phys., accepted, (2010). [arXiv:1006.1225[gr-qc]]. (Cited on pages 21, 31, 39, 41, and 42.)
Andréasson, H., Kunze, M. and Rein, G., “Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system”, Quart. Appl. Math., 68, 17–42, (2010). (Cited on page 23.)
MathSciNet
MATH
Google Scholar
Andréasson, H., Kunze, M. and Rein, G., “The formation of black holes in spherically symmetric gravitational collapse”, Math. Ann., in press, (2011). [DOI], [arXiv:0706.3787 [gr-qc]]. (Cited on pages 17, 19, 22, and 23.)
Andréasson, H. and Rein, G., “A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein-Vlasov system”, Class. Quantum Grav., 23, 3659–3677, (2006). [DOI]. (Cited on pages 17, 23, 37, 38, and 39.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H and Rein, G., “On the steady states of the spherically symmetric Einstein-Vlasov system”, Class. Quantum Grav., 24, 1809–1832, (2007). [DOI]. (Cited on pages 32, 33, and 35.)
ADS
MathSciNet
MATH
Google Scholar
Andréasson, H. and Rein, G., “The asymptotic behaviour in Schwarzschild time of Vlasov matter in spherically symmetric gravitational collapse”, Math. Proc. Camb. Phil. Soc., 149, 173–188, (2010). [DOI]. (Cited on pages 18 and 22.)
MathSciNet
MATH
Google Scholar
Andréasson, H. and Rein, G., “Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system”, J. Hyperbol. Differ. Equations, 7, 707–731, (2010). [DOI]. (Cited on pages 17, 18, 22, and 23.)
MathSciNet
MATH
Google Scholar
Andréasson, H., Rein, G. and Rendall, A.D., “On the Einstein-Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 134, 529–549, (2003). [DOI]. (Cited on pages 26 and 28.)
MathSciNet
MATH
Google Scholar
Andréasson, H., Rendall, A.D. and Weaver, M., “Existence of CMC and constant areal time foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29, 237–262, (2004). [DOI], [gr-qc/0211063]. (Cited on page 28.)
MATH
Google Scholar
Anguige, K., “Isotropic Cosmological Singularities. III. The Cauchy Problem for the Inhomogeneous Conformal Einstein-Vlasov Equations”, Ann. Phys. (N.Y.), 282, 395–419, (2000). [DOI]. (Cited on page 24.)
ADS
MathSciNet
MATH
Google Scholar
Anguige, K. and Tod, K.P., “Isotropic Cosmological Singularities II. The Einstein-Vlasov System”, Ann. Phys. (N.Y.), 276, 294–320, (1999). [DOI]. (Cited on page 25.)
ADS
MathSciNet
MATH
Google Scholar
Arkeryd, L., “On the strong L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283–288, (1992). (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Bancel, D. and Choquet-Bruhat, Y., “Existence, Uniqueness and Local Stability for the Einstein-Maxwell-Boltzmann System”, Commun. Math. Phys., 33, 83–96, (1973). [DOI]. (Cited on page 15.)
ADS
MATH
Google Scholar
Bardeen, J.M., “Rapidly rotating stars, disks, and black holes”, in DeWitt, C. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 241–289, (Gordon and Breach, New York, 1973). (Cited on page 41.)
Google Scholar
Bardos, C. and Degond, P., “Global existence for the Vlasov-Poisson equation in three space variables with small initial data”, Ann. Inst. Henri Poincare, 2, 101–118, (1985). (Cited on pages 9 and 18.)
MathSciNet
MATH
Google Scholar
Bardos, C., Degond, P. and Ha, T.N., “Existence globale des solutions des equations de Vlasov-Poisson relativistes en dimension 3”, C. R. Acad. Sci., 301, 265–268, (1985). (Cited on page 9.)
MATH
Google Scholar
Batt, J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differ. Equations, 25, 342–364, (1977). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Batt, J., Faltenbacher, W. and Horst, E., “Stationary Spherically Symmetric Models in Stellar Dynamics”, Arch. Ration. Mech. Anal., 93, 159–183, (1986). [DOI]. (Cited on page 32.)
MathSciNet
MATH
Google Scholar
Bauer, S., Kunze, M., Rein, G. and Rendall, A.D., “Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation”, Commun. Math. Phys., 266, 267–288, (2006). [DOI]. (Cited on page 11.)
ADS
MathSciNet
MATH
Google Scholar
Berger, B.K., Chruściel, P.T., Isenberg, J. and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [DOI], [gr-qc/9702007]. (Cited on page 28.)
ADS
MATH
Google Scholar
Binney, J. and Tremaine, S., Galactic Dynamics, Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1987). [Google Books]. (Cited on page 36.)
MATH
Google Scholar
Bouchut, F., Golse, F. and Pallard, C., “Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system”, Arch. Ration. Mech. Anal., 170, 1–15, (2003). [DOI]. (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Brauer, U., Rendall, A.D. and Reula, O., “The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11, 2283–2296, (1994). [DOI], [gr-qc/9403050]. (Cited on page 30.)
ADS
MathSciNet
MATH
Google Scholar
Buchdahl, H.A., “General relativistic fluid spheres”, Phys. Rev., 116, 1027–1034, (1959). [DOI]. (Cited on page 35.)
ADS
MathSciNet
MATH
Google Scholar
Burnett, G.A. and Rendall, A.D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13, 111–123, (1996). [DOI]. (Cited on page 26.)
ADS
MathSciNet
MATH
Google Scholar
Calogero, S., “Spherically symmetric steady states of galactic dynamics in scalar gravity”, Class. Quantum Grav., 20, 1729–1741, (2003). [DOI]. (Cited on page 10.)
ADS
MathSciNet
MATH
Google Scholar
Calogero, S., “The Newtonian limit of the relativistic Boltzmann equation”, J. Math. Phys., 45, 4042–4052, (2004). [DOI]. (Cited on page 6.)
ADS
MathSciNet
MATH
Google Scholar
Calogero, S., “Global classical solutions to the 3D Nordström-Vlasov system”, Commun. Math. Phys., 266, 343–353, (2006). [DOI]. (Cited on page 11.)
ADS
MATH
Google Scholar
Calogero, S. and Heinzle, J.M., “Dynamics of Bianchi type I solutions of the Einstein equations with anisotropic matter”, Ann. Henri Poincare, 10, 225–274, (2009). [DOI]. (Cited on page 25.)
ADS
MathSciNet
MATH
Google Scholar
Calogero, S. and Heinzle, J.M., “Oscillations toward the singularity of LRS Bianchi type IX cosmological models with Vlasov matter”, SIAM J. Appl. Dyn. Syst., 9, 1244–1262, (2010). [DOI]. (Cited on page 25.)
MathSciNet
MATH
Google Scholar
Calogero, S. and Heinzle, J.M., “Bianchi Cosmologies with Anisotropic Matter: Locally Rotationally Symmetric Models”, Physica D, 240, 636–669, (2011). [DOI]. (Cited on page 25.)
ADS
MathSciNet
MATH
Google Scholar
Calogero, S. and Lee, H., “The non-relativistic limit of the Nordström-Vlasov system”, Commun. Math. Sci., 2, 19–34, (2004). (Cited on page 10.)
MathSciNet
MATH
Google Scholar
Calogero, S. and Rein, G., “On classical solutions of the Nordstroöm-Vlasov system”, Commun. Part. Diff. Eq., 28, 1863–1885, (2003). [DOI]. (Cited on page 11.)
MATH
Google Scholar
Calogero, S. and Rein, G., “Global weak solutions to the Nordstroöm-Vlasov system”, J. Differ. Equations, 204, 323–338, (2004). [DOI]. (Cited on page 11.)
ADS
MATH
Google Scholar
Calogero, S., Sanchez, O. and Soler, J., “Asymptotic behavior and orbital stability of galactic dynamics in relativistic scalar gravity”, Arch. Ration. Mech. Anal., 194, 743–773, (2009). [DOI]. (Cited on page 10.)
MathSciNet
MATH
Google Scholar
Cercignani, C., Illner, R. and Pulvirenti, M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, (Springer, Berlin; New York, 1988). (Cited on page 8.)
MATH
Google Scholar
Cercignani, C. and Kremer, G.M., The Relativistic Boltzmann Equation: Theory and Applications, Progress in Mathematical Physics, 22, (Birkhäuser, Basel, 2002). (Cited on pages 6 and 8.)
MATH
Google Scholar
Choquet-Bruhat, Y., “Problème de Cauchy pour le système intégro différentiel d’Einstein-Liouville”, Ann. Inst. Fourier, 21, 181–201, (1971). (Cited on pages 14 and 15.)
MathSciNet
MATH
Google Scholar
Choquet-Bruhat, Y. and Noutchegueme, N., “Systéme de Yang-Mills-Vlasov en jauge temporelle”, Ann. Inst. Henri Poincare, 55, 759–787, (1991). (Cited on page 15.)
MathSciNet
MATH
Google Scholar
Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). [DOI]. (Cited on page 23.)
ADS
MathSciNet
MATH
Google Scholar
Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [DOI]. (Cited on pages 20 and 23.)
MathSciNet
MATH
Google Scholar
Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994). [DOI]. (Cited on page 21.)
MathSciNet
MATH
Google Scholar
Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183–217, (1999). [DOI]. (Cited on pages 20 and 23.)
MathSciNet
MATH
Google Scholar
Christodoulou, D., “On the global initial value problem and the issue of singularities”, Class. Quantum Grav., 16, A23–A35, (1999). [DOI]. (Cited on pages 16, 19, and 23.)
MathSciNet
MATH
Google Scholar
Dafermos, M., “Spherically symmetric spacetimes with a trapped surface”, Class. Quantum Grav., 22, 2221–2232, (2005). [DOI], [gr-qc/0403032]. (Cited on pages 19, 20, 21, and 22.)
ADS
MathSciNet
MATH
Google Scholar
Dafermos, M., “A note on the collapse of small data self-gravitating massless collisionless matter”, J. Hyperbol. Differ. Equations, 3, 589–598, (2006). (Cited on pages 17 and 18.)
MathSciNet
MATH
Google Scholar
Dafermos, M. and Rendall, A.D., “An extension principle for the Einstein-Vlasov system in spherical symmetry”, Ann. Henri Poincare, 6, 1137–1155, (2005). [DOI], [gr-qc/0411075]. (Cited on pages 17, 18, 20, 21, and 22.)
ADS
MathSciNet
MATH
Google Scholar
Dafermos, M. and Rendall, A.D., “Inextendibility of expanding cosmological models with symmetry”, Class. Quantum Gram., 22, L143–L147, (2005). [DOI], [gr-qc/0509106]. (Cited on pages 19 and 27.)
ADS
MathSciNet
MATH
Google Scholar
Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for T2-symmetric cosmological spacetimes with collisionless matter”, arXiv e-print, (2006). [gr-qc/0610075]. (Cited on page 28.)
Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter”, arXiv e-print, (2007). [gr-qc/0701034]. (Cited on page 27.)
de Groot, S.R., van Leeuwen, W.A. and van Weert, C.G., Relativistic Kinetic Theory: Principles and Applications, (North-Holland; Elsevier, Amsterdam; New York, 1980). (Cited on pages 6 and 8.)
Google Scholar
Desvillettes, L. and Villani, C., “On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation”, Invent. Math., 159, 245–316, (2005). [DOI]. (Cited on page 8.)
ADS
MathSciNet
MATH
Google Scholar
DiPerna, R.J. and Lions, P.L., “Global weak solutions of Vlasov-Maxwell systems”, Commun. Pure Appl. Math., 42, 729–757, (1989). [DOI]. (Cited on page 10.)
MathSciNet
MATH
Google Scholar
DiPerna, R.J. and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math., 130, 321–366, (1989). [DOI]. (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Dudyhski, M. and Ekiel-Jezewska, M., “Global existence proof for the relativistic Boltzmann equation”, J. Stat. Phys., 66, 991–1001, (1992). [DOI]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Ehlers, J., “Survey of general relativity theory”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology, Proceedings of the summer school held 14–26 August 1972 at the Banff Centre, Banff, Alberta, Atrophysics and Space Science Library, 38, pp. 1–125, (Reidel, Dordrecht; Boston, 1973). (Cited on page 15.)
Google Scholar
Firt, R. and Rein, G., “Stability of disk-like galaxies — Part I: Stability via reduction”, Analysis, 26, 507–525, (2007). [DOI], [arXiv:math-ph/0605070]. (Cited on page 42.)
MATH
Google Scholar
Fjällborg, M., “On the cylindrically symmetric Einstein-Vlasov system”, Commun. Part. Diff. Eq., 31, 1381–1405, (2006). [DOI], [gr-qc/0503098]. (Cited on page 16.)
MathSciNet
MATH
Google Scholar
Fjallborg, M., Heinzle, M. and Uggla, C., “Self-gravitating stationary spherically symmetric systems in relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 143, 731–752, (2007). [DOI]. (Cited on page 32.)
MathSciNet
MATH
Google Scholar
Ganguly, K. and Victory, H., “On the convergence for particle methods for multidimensional Vlasov-Poisson systems”, SIAM J. Numer. Anal., 26, 249–288, (1989). [DOI]. (Cited on page 23.)
ADS
MathSciNet
MATH
Google Scholar
Giuliani, A. and Rothman, T., “Absolute stability limit for relativistic charged spheres”, Gen. Relativ. Gravit., 40, 1427–1447, (2008). [DOI]. (Cited on page 36.)
ADS
MathSciNet
MATH
Google Scholar
Glassey, R.T., The Cauchy Problem in Kinetic Theory, (SIAM, Philadelphia, 1996). [Google Books]. (Cited on pages 8 and 10.)
MATH
Google Scholar
Glassey, R., “Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data”, Commun. Math. Phys., 264, 705–724, (2006). [DOI]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Glassey, R.T. and Schaeffer, J., “On symmetric solutions to the relativistic Vlasov-Poisson system”, Commun. Math. Phys., 101, 459–473, (1985). [DOI]. (Cited on pages 9 and 10.)
ADS
MathSciNet
MATH
Google Scholar
Glassey, R.T. and Schaeffer, J., “The ‘Two and One-Half Dimensional’ Relativistic Vlasov-Maxwell System”, Commun. Math. Phys., 185, 257–284, (1997). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Glassey, R.T. and Schaeffer, J., “The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part II”, Arch. Ration. Mech. Anal., 141, 355–374, (1998). (Cited on page 9.)
MATH
Google Scholar
Glassey, R.T. and Schaeffer, J., “On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions”, Math. Method. Appl. Sci., 24, 143–157, (2001). [DOI]. (Cited on page 10.)
ADS
MathSciNet
MATH
Google Scholar
Glassey, R.T. and Strauss, W., “Singularity formation in a collisionless plasma could only occur at high velocities”, Arch. Ration. Mech. Anal., 92, 56–90, (1986). [DOI]. (Cited on pages 9 and 18.)
MATH
Google Scholar
Glassey, R.T. and Strauss, W., “Absence of shocks in an initially dilute collisionless plasma”, Commun. Math. Phys., 113, 191–208, (1987). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Glassey, R.T. and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Res. Inst. Math. Sci., 29, 301–347, (1993). [DOI]. (Cited on pages 7 and 8.)
MathSciNet
MATH
Google Scholar
Glassey, R.T. and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Transp. Theor. Stat. Phys., 24, 657–678, (1995). [DOI]. (Cited on page 8.)
ADS
MATH
Google Scholar
Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). [gr-qc/9712084]. (Cited on page 23.)
MathSciNet
MATH
Google Scholar
Guo, Y., “The Vlasov-Maxwell-Boltzmann system near Maxwellians”, Invent. Math., 153, 593–630, (2003). [DOI]. (Cited on page 10.)
ADS
MathSciNet
MATH
Google Scholar
Guven, J. and ÓMurchadha, N., “Bounds on 2m/R for static spherical objects”, Phys. Rev. D, 60, 084020, (1999). [DOI]. (Cited on page 35.)
ADS
MathSciNet
Google Scholar
Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys., 166, 457–493, (1995). [DOI]. (Cited on page 39.)
ADS
MathSciNet
MATH
Google Scholar
Heinzle, J.M. and Uggla, C., “Dynamics of the spatially homogeneous Bianchi type I Einstein-Vlasov equations”, Class. Quantum Grav., 23, 3463–3490, (2006). [DOI]. (Cited on pages 24 and 25.)
ADS
MathSciNet
MATH
Google Scholar
Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. I”, J. Math. Phys., 43, 2439–2465, (2002). [DOI]. (Cited on page 26.)
ADS
MathSciNet
MATH
Google Scholar
Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. II”, J. Math. Phys., 43, 2466–2485, (2002). [DOI]. (Cited on page 28.)
ADS
MathSciNet
MATH
Google Scholar
Horst, E., “On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation (Parts I and II)”, Math. Method. Appl. Sci., 6, 262–279, (1982). [DOI]. (Cited on page 9.)
Google Scholar
Horst, E., “On the asymptotic growth of the solutions of the Vlasov-Poisson system”, Math. Method. Appl. Sci., 16, 75–86, (1993). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Illner, R. and Rein, G., “Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case”, Math. Method. Appl. Sci., 19, 1409–1413, (1996). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Illner, R. and Shinbrot, M., “The Boltzmann equation, global existence for a rare gas in an infinite vacuum”, Commun. Math. Phys., 95, 217–226, (1984). [DOI]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Ipser, J.R., “Relativistic, spherically symmetric star clusters: III. Stability of compact isotropic models”, Astrophys. J., 158, 17–43, (1969). [DOI]. (Cited on page 37.)
ADS
MathSciNet
Google Scholar
Isenberg, J.A. and Rendall, A.D., “Cosmological spacetimes not covered by a constant mean curvature slicing”, Class. Quantum Grav., 15, 3679–3688, (1998). [DOI]. (Cited on page 28.)
ADS
MathSciNet
MATH
Google Scholar
Jiang, Z., “Global existence proof for relativistic Boltzmann equation with hard interactions”, J. Stat. Phys., 130, 535–544, (2008). [DOI]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Karageorgis, P. and Stalker, J., “Sharp bounds on 2m/r for static spherical objects”, Class. Quantum Grav., 25, 195021, (2008). [DOI]. (Cited on page 36.)
ADS
MathSciNet
MATH
Google Scholar
Klainerman, S. and Staffilani, G., “A new approach to study the Vlasov-Maxwell system”, Commun. Pure Appl. Anal., 1, 103–125, (2002). (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Kunze, M. and Rendall, A.D., “The Vlasov-Poisson system with radiation damping”, Ann. Henri Poincare, 2, 857–886, (2001). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Lee, H., “Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant”, Math. Proc. Camb. Phil. Soc., 137, 495–509, (2004). [DOI]. (Cited on page 25.)
MathSciNet
MATH
Google Scholar
Lee, H., “The Einstein-Vlasov System with a Scalar Field”, Ann. Henri Poincare, 6, 697–723, (2005). [DOI], [gr-qc/0404007]. (Cited on page 29.)
ADS
MathSciNet
MATH
Google Scholar
Lee, H., “Global existence of solutions of the Nordström-Vlasov system in two space dimensions”, Commun. Part. Diff. Eq., 30, 663–687, (2005). [DOI], [math-ph/0312014]. (Cited on page 11.)
MATH
Google Scholar
Lee, H., “Classical solutions to the Vlasov-Poisson system in an accelerating cosmological setting”, J. Differ. Equations, 249, 1111–1130, (2010). [DOI]. (Cited on page 30.)
ADS
MathSciNet
MATH
Google Scholar
Lemaître, G., “L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51–85, (1933). (Cited on page 36.)
MATH
Google Scholar
Lemou, M., Méhats, F. and Raphaël, P., “Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system”, J. Amer. Math. Soc., 21, 1019–1063, (2008). (Cited on pages 10 and 21.)
MathSciNet
MATH
Google Scholar
Lions, P.L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications. I”, J. Math. Kyoto Univ., 34, 391–427, (1994). (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Lions, P.L. and Perthame, B., “Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system”, Invent. Math., 105, 415–430, (1991). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55–69, (1998). (Cited on page 32.)
MathSciNet
MATH
Google Scholar
Martín-García, J.M. and Gundlach, C., “Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system”, Phys. Rev. D, 65, 084026, 1–18, (2002). [DOI], [gr-qc/0112009]. (Cited on page 21.)
MathSciNet
Google Scholar
Moncrief, V. and Eardley, D.M., “The Global Existence Problem and Cosmic Censorship in General Relativity”, Gen. Relativ. Gravit., 13, 887–892, (1981). [DOI]. (Cited on pages 17, 19, and 21.)
ADS
MathSciNet
Google Scholar
Mucha, P.B., “The Cauchy Problem for the Einstein-Boltzmann System”, J. Appl. Anal., 4, 129–141, (1998). [DOI]. (Cited on page 15.)
ADS
MathSciNet
MATH
Google Scholar
Mucha, P.B., “The Cauchy Problem for the Einstein-Vlasov System”, J. Appl. Anal., 4, 111–126, (1998). [DOI]. (Cited on page 15.)
MathSciNet
MATH
Google Scholar
Nishida, T. and Imai, K., “Global solutions to the initial value problem for the nonlinear Boltzmann equation”, Publ. Res. Inst. Math. Sci., 12, 229–239, (1976). [DOI]. (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”, Ann. Phys. (Leipzig), 42, 533–554, (1913). [DOI]. (Cited on page 10.)
ADS
MATH
Google Scholar
Noundjeu, P., “The Einstein-Vlasov-Maxwell(EVM) System with Spherical Symmetry”, Class. Quantum Grav., 22, 5365–5384, (2005). [DOI]. (Cited on page 23.)
ADS
MathSciNet
MATH
Google Scholar
Noundjeu, P. and Noutchegueme, N., “Local existence and continuation criterion forsolutions of the spherically symmetric Einstein-Vlasov-Maxwell system”, Gen. Relativ. Gravit., 36, 1373–1398, (2004). [DOI], [gr-qc/0311081]. (Cited on page 23.)
ADS
MATH
Google Scholar
Noundjeu, P., Noutchegueme, N. and Rendall, A.D., “Existence of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system”, J. Math. Phys., 45, 668–676, (2004). [DOI]. (Cited on page 23.)
ADS
MathSciNet
MATH
Google Scholar
Noutchegueme, N. and Dongo, D., “Global existence of solutions for the Einstein-Boltzmann system in a Bianchi type I spacetime for arbitrarily large initial data”, Class. Quantum Grav., 23, 2979–3003, (2006). [DOI]. (Cited on page 15.)
MathSciNet
MATH
Google Scholar
Noutchegueme, N. and Takou, E., “Global existence of solutions for the Einstein-Boltzmann system with cosmological constant in the Robertson-Walker space-time”, Commun. Math. Sci., 4, 291–314, (2006). (Cited on page 15.)
MathSciNet
MATH
Google Scholar
Noutchegueme, N. and Tetsadjio, M.E., “Global solutions for the relativistic Boltzmann equation in the homogeneous case on the Minkowski space-time”, arXiv e-print, (2003). [gr-qc/0307065]. (Cited on page 7.)
Nungesser, E., “Isotropization of non-diagonal Bianchi I spacetimes with collisionless matter at late times assuming small data”, Class. Quantum Grav., 27, 235025, (2010). [DOI]. (Cited on page 24.)
ADS
MathSciNet
MATH
Google Scholar
Olabarrieta, I. and Choptuik, M.W., “Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007, 1–10, (2001). [DOI], [gr-qc/0107076]. (Cited on page 23.)
MathSciNet
Google Scholar
Pallard, C., “On the boundedness of the momentum support of solutions to the relativistic Vlasov-Maxwell system”, Indiana Univ. Math. J., 54, 1395–1409, (2005). [DOI]. (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Pallard, C., “A pointwise bound on the electromagnetic field generated by a collisionless plasma”, Math. Mod. Meth. Appl. Sci., 15, 1371–1391, (2005). [DOI]. (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Pallard, C., “On global smooth solutions to the 3D Vlasov-Nordströom system”, Ann. Inst. Henri Poincare C, 23, 85–96, (2006). [DOI]. (Cited on page 11.)
ADS
MathSciNet
MATH
Google Scholar
Perthame, B., “Time decay, propagation of low moments and dispersive effects for kinetic equations”, Commun. Part. Diff. Eq., 21, 659–686, (1996). (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Pfaffelmoser, K., “Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data”, J. Differ. Equations, 95, 281–303, (1992). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Rein, G., “Static solutions of the spherically symmetric Vlasov-Einstein system”, Math. Proc. Camb. Phil. Soc., 115, 559–570, (1994). [DOI]. (Cited on page 32.)
MathSciNet
MATH
Google Scholar
Rein, G., The Vlasov-Einstein system with surface symmetry, Habilitation, (Ludwig-Maximilians-Universität, München, 1995). Online version (accessed 02 March 2011): http://www.math.uni-bayreuth.de/org/mathe6/staff/memb/grein/publications/publ.html. (Cited on pages 16 and 18.)
Google Scholar
Rein, G., “Cosmological solutions of the Vlasov-Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739–762, (1996). [DOI]. (Cited on pages 26 and 27.)
MathSciNet
MATH
Google Scholar
Rein, G., “Growth estimates for the Vlasov-Poisson system in the plasma physics case”, Math. Nachr., 191, 269–278, (1998). [DOI]. (Cited on page 9.)
MathSciNet
MATH
Google Scholar
Rein, G., “Static shells for the Vlasov-Poisson and Vlasov-Einstein systems”, Indiana Univ. Math. J., 48, 335–346, (1999). [DOI]. (Cited on page 32.)
MathSciNet
MATH
Google Scholar
Rein, G., “Global weak solutions of the relativistic Vlasov-Maxwell system revisited”, Commun. Math. Sci., 2, 145–148, (2004). (Cited on page 10.)
MathSciNet
MATH
Google Scholar
Rein, G., “On future completeness for the Einstein-Vlasov system with hyperbolic symmtery”, Math. Proc. Camb. Phil. Soc., 137, 237–244, (2004). [DOI]. (Cited on page 27.)
MATH
Google Scholar
Rein, G., “Collisionless Kinetic Equations from Astrophysics — The Vlasov-Poisson System”, in Dafermos, C.M. and Feireisl, E., eds., Handbook of Differential Equations: Evolutionary Equations, Vol. 3, pp. 383–476, (Elsevier/North-Holland, Amsterdam, 2006). [Google Books]. (Cited on pages 10, 31, and 37.)
Google Scholar
Rein, G. and Rendall, A.D., “Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data”, Commun. Math. Phys., 150, 561–583, (1992). [DOI]. (Cited on pages 16, 17, and 18.)
ADS
MathSciNet
MATH
Google Scholar
Rein, G. and Rendall, A.D., “The Newtonian limit of the spherically symmetric Vlasov-Einstein system”, Commun. Math. Phys., 150, 585–591, (1992). [DOI]. (Cited on page 18.)
ADS
MathSciNet
MATH
Google Scholar
Rein, G. and Rendall, A.D., “Smooth static solutions of the spherically symmetric Vlasov-Einstein system”, Ann. Inst. Henri Poincare A, 59, 383–397, (1993). (Cited on page 32.)
MathSciNet
MATH
Google Scholar
Rein, G. and Rendall, A.D., “Compact support of spherically symmetric equilibria in relativistic and non-relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 128, 363–380, (2000). [DOI]. (Cited on page 32.)
MATH
Google Scholar
Rein, G., Rendall, A.D. and Schaefer, J., “A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system”, Commun. Math. Phys., 168, 467–478, (1995). [DOI]. (Cited on pages 19, 20, and 21.)
ADS
MathSciNet
MATH
Google Scholar
Rein, G., Rendall, A.D. and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998). [DOI], [gr-qc/9804040]. (Cited on page 23.)
Google Scholar
Rein, G. and Rodewis, T., “Convergence of a particle-in-cell scheme for the spherically symmetric Vlasov-Einstein system”, Indiana Univ. Math. J., 52, 821–862, (2003). [DOI]. (Cited on page 23.)
MathSciNet
MATH
Google Scholar
Rendall, A.D., “Cosmic censorship and the Vlasov equation”, Class. Quantum Grav., 9, L99–L104, (1992). [DOI]. (Cited on pages 17 and 22.)
ADS
MathSciNet
Google Scholar
Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Einstein-Vlasov system”, Commun. Math. Phys., 163, 89–112, (1994). [DOI]. (Cited on page 18.)
ADS
MATH
Google Scholar
Rendall, A.D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517–1533, (1995). [DOI]. (Cited on page 26.)
ADS
MathSciNet
MATH
Google Scholar
Rendall, A.D., “Global properties of locally spatially homogeneous cosmological models with matter”, Math. Proc. Camb. Phil. Soc., 118, 511–526, (1995). [DOI]. (Cited on page 24.)
MathSciNet
MATH
Google Scholar
Rendall, A.D., “The initial singularity in solutions of the Einstein-Vlasov system of Bianchi type I.”, J. Math. Phys., 37, 438–451, (1996). [DOI]. (Cited on page 24.)
ADS
MathSciNet
MATH
Google Scholar
Rendall, A.D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589–3598, (1997). [DOI]. (Cited on page 28.)
MathSciNet
MATH
Google Scholar
Rendall, A.D., “Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164, (1997). [DOI]. (Cited on pages 27 and 28.)
ADS
MathSciNet
MATH
Google Scholar
Rendall, A.D., “An introduction to the Einstein-Vlasov system”, in Chruhściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29–March 30, 1996, Banach Center Publications, 41, pp. 35–68, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997). (Cited on pages 15, 16, 17, 18, 20, and 21.)
Google Scholar
Rendall, A.D., “Cosmological Models and Centre Manifold Theory”, Gen. Relativ. Gravit., 34, 1277–1294, (2002). [DOI]. (Cited on page 25.)
MathSciNet
MATH
Google Scholar
Rendall, A.D., Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, (Oxford University Press, Oxford; New York, 2008). (Cited on page 15.)
MATH
Google Scholar
Rendall, A.D. and Tod, K.P., “Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav., 16, 1705–1726, (1999). [DOI]. (Cited on page 25.)
ADS
MathSciNet
MATH
Google Scholar
Rendall, A.D. and Uggla, C., “Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein-Vlasov equations”, Class. Quantum Grav., 17, 4697–4713, (2000). [DOI]. (Cited on page 25.)
ADS
MathSciNet
MATH
Google Scholar
Rendall, A.D. and Velazquez, J.J.L., “A class of dust-like self-similar solutions of the massless Einstein-Vlasov system”, arXiv e-print, (2010). [arXiv:1009.2596 [gr-qc]]. (Cited on page 21.)
Ringströom, H., “Future stability of some models of the universe — with an introduction to the Einstein-Vlasov system”, unpublished manuscript. (Cited on page 29.)
Ringström, H., “Future stability of the Einstein-non-linear scalar field system”, Invent. Math., 173, 123–208, (2008). [DOI]. (Cited on page 30.)
ADS
MathSciNet
MATH
Google Scholar
Ringström, H., “Power law inflation”, Commun. Math. Phys., 290, 155–218, (2009). [DOI]. (Cited on page 30.)
ADS
MathSciNet
MATH
Google Scholar
Rodnianski, I. and Speck, J., “The stability of the irrotational Euler-Einstein system with a positive cosmological constant”, arXiv e-print, (2009). [arXiv:0911.5501 [gr-qc]]. (Cited on page 30.)
Schaeffer, J., “The classical limit of the relativistic Vlasov-Maxwell system”, Commun. Math. Phys., 104, 403–421, (1986). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Schaeffer, J., “Discrete approximation of the Poisson-Vlasov system”, Quart. Appl. Math., 45, 59–73, (1987). (Cited on page 23.)
ADS
MathSciNet
MATH
Google Scholar
Schaeffer, J., “Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions”, Commun. Part. Diff. Eq., 16, 1313–1335, (1991). [DOI]. (Cited on page 9.)
ADS
MathSciNet
MATH
Google Scholar
Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov-Einstein system”, Commun. Math. Phys., 204, 313–327, (1999). [DOI]. (Cited on page 32.)
ADS
MathSciNet
MATH
Google Scholar
Schwarzschild, K., “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(III), 424–434, (1916). [arXiv:physics/9912033]. (Cited on page 35.)
MATH
Google Scholar
Shapiro, S.L. and Teukolsky, S.A., “Relativistic stellar dynamics on the computer: II. Physical applications”, Astrophys. J., 298, 58–79, (1985). [DOI]. (Cited on pages 37 and 39.)
ADS
Google Scholar
Shizuta, Y., “On the classical solutions of the Boltzmann equation”, Commun. Pure Appl. Math., 36, 705–754, (1983). [DOI]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Smulevici, J., “Strong cosmic censorship for T2-symmetric spacetimes with cosmological constant and matter”, Ann. Henri Poincare, 9, 1425–1453, (2008). [DOI], [arXiv:0710.1351]. (Cited on page 28.)
ADS
MathSciNet
MATH
Google Scholar
Smulevici, J., “On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry”, arXiv e-print, (2009). [arXiv:0904.0806 [gr-qc]]. (Cited on pages 27 and 28.)
Speck, J., “The nonlinear future-stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant”, arXiv e-print, (2011). [arXiv:1102.1501[gr-qc]]. (Cited on page 30.)
Stewart, J.M., Non-equilibrium relativistic kinetic theory, Lecture Notes in Physics, 10, (Springer, Berlin; New York, 1971). (Cited on page 15.)
Google Scholar
Strain, R.M., “Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials”, Commun. Math. Phys., 300, 529–597, (2010). [DOI], [arXiv:1003.4893 [math.AP]]. (Cited on page 7.)
ADS
MathSciNet
MATH
Google Scholar
Strain, R.M., “Global Newtonian limit for the relativistic Boltzmann equation near vacuum”, SIAM J. Math. Anal., 42, 1568–1601, (2010). [DOI]. (Cited on pages 6 and 7.)
MathSciNet
MATH
Google Scholar
Strain, R.M., “Coordinates in the relativistic Boltzmann theory”, Kinet. Relat. Mod., 4, 345–359, (2011). [DOI], [arXiv:1011.5093 [math.AP]]. (Cited on page 6.)
MathSciNet
MATH
Google Scholar
Strain, R.M. and Guo, Y., “Stability of the relativistic Maxwellien in a collisional plasma”, Commun. Math. Phys., 251, 263–320, (2004). [DOI]. (Cited on page 10.)
ADS
MATH
Google Scholar
Synge, J.L., The Relativistic Gas, (North-Holland; Interscience, Amsterdam; New York, 1957). (Cited on page 8.)
MATH
Google Scholar
Tchapnda, S.B., “Structure of solutions near the initial singularity for the surface-symmetric Einstein-Vlasov system”, Class. Quantum Grav., 21, 5333–5346, (2004). [DOI], [gr-qc/0407062]. (Cited on page 26.)
ADS
MathSciNet
MATH
Google Scholar
Tchapnda, S.B., “On surface-symmetric spacetimes with collisionless and charged matter”, Ann. Henri Poincare, 8, 1221–1253, (2007). [DOI]. (Cited on page 26.)
ADS
MathSciNet
MATH
Google Scholar
Tchapnda, S.B. and Noutchegueme, N., “The surface-symmetric Einstein-Vlasov system with cosmological constant”, Math. Proc. Camb. Phil. Soc., 18, 541–553, (2005). [DOI], [gr-qc/0304098]. (Cited on page 26.)
MathSciNet
MATH
Google Scholar
Tchapnda, S.B. and Rendall, A.D., “Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant”, Class. Quantum Grav., 20, 3037–3049, (2003). [DOI]. (Cited on page 27.)
ADS
MathSciNet
MATH
Google Scholar
Tegankong, D., “Global existence and future asymptotic behaviour for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, Class. Quantum Grav., 22, 2381–2391, (2005). [DOI], [gr-qc/0501062]. (Cited on page 29.)
ADS
MathSciNet
MATH
Google Scholar
Tegankong, D., Noutchegueme, N. and Rendall, A.D., “Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, J. Hyperbol. Differ. Equations, 1, 691–724, (2004). [DOI], [gr-qc/0405039]. (Cited on page 29.)
MathSciNet
MATH
Google Scholar
Tegankong, D. and Rendall, A.D., “On the nature of initial singularities for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, Math. Proc. Camb. Phil. Soc., 141, 547–562, (2006). [DOI]. (Cited on page 29.)
MathSciNet
MATH
Google Scholar
Ukai, S., “On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation”, Proc. Japan Acad., 50, 179–184, (1974). [DOI]. (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Villani, C., “A review of mathematical topics in collisional kinetic theory”, in Friedlander, S. and Serre, D., eds., Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 71–305, (Elsevier, Amsterdam; Boston, 2002). Online version (accessed 11 February 2011): http://math.univ-lyon1.fr/homes-www/villani/surveys.html. (Cited on page 8.)
Google Scholar
Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [Google Books]. (Cited on page 16.)
MATH
Google Scholar
Weaver, M., “On the area of the symmetry orbits in T2 symmetric pacetimes with Vlasov matter”, Class. Quantum Grav., 21, 1079–1097, (2004). [DOI], [gr-qc/0308055]. (Cited on pages 27 and 28.)
ADS
MATH
Google Scholar
Wennberg, B., “Regularity in the Boltzmann equation and the Radon transform”, Commun. Part. Diff. Eq., 19, 2057–2074, (1994). [DOI]. (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Wennberg, B., “The geometry of binary collisions and generalized Radon transforms”, Arch. Ration. Mech. Anal., 139, 291–302, (1997). [DOI]. (Cited on page 7.)
MathSciNet
MATH
Google Scholar
Wolansky, G., “Static Solutions of the Vlasov-Einstein System”, Arch. Ration. Mech. Anal., 156, 205–230, (2001). [DOI]. (Cited on page 37.)
MathSciNet
MATH
Google Scholar
Zel’dovich, Y.B. and Novikov, I.D., Relativistic Astrophysics, 1, (University of Chicago Press, Chicago, 1971). (Cited on page 38.)
Google Scholar
Zel’dovich, Y.B. and Podurets, M.A., “The evolution of a system of gravitationally interacting point masses”, Sov. Astron., 9, 742–749, (1965). Translated from Astron. Zh. 42, 963–973 (1965). (Cited on page 38.)
ADS
Google Scholar