Alford, M., Berges, J., and Rajagopal, K., “Magnetic Fields within Color Superconducting Neutron Star Cores”, Nucl. Phys. B, 571, 269–284, (2000). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/2000NuPhB.571..269A 10
ADS
Google Scholar
Amsden, A.A., Bertsch, G.F., Harlow, F.H., and Nix, J.R., “Relativistic Hydrodynamic Theory of Heavy-Ion Collisions”, Phys. Rev. Lett., 35, 905–908, (1975). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/1975PhRvL..35..905A 15
ADS
Google Scholar
Amsden, A.A., Harlow, F.H., and Nix, J.R., “Relativistic Nuclear Fluid Dynamics”, Phys. Rev. C, 15, 2059–2071, (1977). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/1977PhRvC..15.2059A 15
ADS
Google Scholar
Andersson, N., “TOPICAL REVIEW: Gravitational Waves from Instabilities in Relativistic Stars”, Class. Quantum Grav., 20, 105–144, (2003). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/2002astro.ph.11057A 14
ADS
Google Scholar
Andersson, N., and Comer, G.L., “On the Dynamics of Superfluid Neutron Star Cores”, Mon. Not. R. Astron. Soc., 328, 1129–1143, (2005). Related online version (cited on 14 December 2006): http://arXiv.org/abs/astro-ph/0101193 11.3, 12
ADS
Google Scholar
Andersson, N., and Comer, G.L., “A Flux-Conservative Formalism for Convective and Dissipative Multi-Fluid Systems, with Application to Newtonian Superfluid Neutron Stars”, Class. Quantum Grav., 23, 5505–5529, (2006) 4, 12, 14.3
ADS
MathSciNet
MATH
Google Scholar
Andersson, N., Comer, G.L., and Grosart, K., “Lagrangian Perturbation Theory of Nonrelativistic Rotating Superfluid Stars”, Mon. Not. R. Astron. Soc., 355, 918–928, (2004) 10
ADS
Google Scholar
Andreev, A.F., and Bashkin, E.P., “Three-Velocity Hydrodynamics of Superfluid Solutions”, Zh. Eksp. Teor. Fiz., 69, 319–326, (1975) 4
Google Scholar
Anile, A.M., Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma physics, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989) 1.1
MATH
Google Scholar
Arnold, V.I., Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, (Springer, Berlin, Germany; New York, U.S.A., 1995), 2nd edition 2.3
Google Scholar
Bekenstein, J.D., “Helicity Conservation Laws for Fluids and Plasmas”, Astrophys. J., 319, 207–214, (1987). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/1987ApJ...319..207B 6.2
ADS
Google Scholar
Belenkij, S.Z., and Landau, L.D., “Hydrodynamic Theory of Multiple Production of Particles”, Usp. Fiz. Nauk., 56, 309, (1955) 15
MATH
Google Scholar
Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982) 5.2
MATH
Google Scholar
Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.-A., “Axisymmetric rotating relativistic bodies: a new numerical approach for ‘exact’ solutions”, Astron. Astrophys., 278, 421–443, (1993) 2.3
ADS
MathSciNet
Google Scholar
Carruthers, P., “Heretical Models of Particle Production”, Ann. N.Y. Acad. Sci., 229, 91–123, (1974) 15
ADS
Google Scholar
Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun. Math. Phys., 17, 233–238, (1970). Related online version (cited on 14 December 2006): http://projecteuclid.org/getRecord?id=euclid.cmp/1103842335 2.3
ADS
MathSciNet
MATH
Google Scholar
Carter, B., “The Canonical Treatment of Heat Conduction and Superfluidity in Relativistic Hydrodynamics”, in Dadhich, N., Rao, J.K., Narlikar, J.V., and Vishveshwara, C.V., eds., A Random Walk in General Relativity and Cosmology: Festschrift for Professors P.C. Vaidya & A.K. Raychaudhuri, 49–62, (Wiley Eastern, New Delhi, India, 1983) 1.1, 17
Google Scholar
Carter, B., “Conductivity with Causality in Relativistic Hydrodynamics: The Regular Solution to Eckart’s Problem”, in Iyer, B.R., Kembhavi, A., Narlikar, J.V., and Vishveshwara, C.V., eds., Highlights in Gravitation and Cosmology, Proceedings of the International Conference on Gravitation and Cosmology, Goa, India, 14–19 December 1987, 58, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1988) 14.3
Google Scholar
Carter, B., “Covariant Theory of Conductivity in Ideal Fluid or Solid Media”, in Anile, A., and Choquet-Bruhat, M., eds., Relativistic Fluid Dynamics, Lectures given at the 1st 1987 session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Noto, Italy, May 25–June 3, 1987, vol. 1385 of Lecture Notes in Mathematics, 1–64, (Springer, Berlin, Germany; New York, U.S.A., 1989) 1.1, 6, 6.2, 10, 11, 17
Google Scholar
Carter, B., “Convective Variational Approach to Relativistic Thermodynamics of Dissipative Fluids”, Proc. R. Soc. London, Ser. A, 433, 45, (1991) 14.3, 14.4
ADS
MathSciNet
MATH
Google Scholar
Carter, B., “Basic Brane Theory”, Class. Quantum Grav., 9, 19–33, (1992) 1.1, 3, 4, 17
ADS
MathSciNet
MATH
Google Scholar
Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-fluid Models for Neutron Stars: I. Milne-Cartan Structure and Variational Formulation”, Int. J. Mod. Phys. D, 13, 291–326, (2004) 2.3, 6.1, 12, 12
ADS
MathSciNet
MATH
Google Scholar
Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars: II. Stress-Energy Tensors and Virial Theorems”, Int. J. Mod. Phys. D, 14, 717–748, (2005) 2.3, 6.1, 12, 12
ADS
MathSciNet
MATH
Google Scholar
Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-fluid Models for Neutron stars: III. Transvective, Viscous, and Superfluid Drag Dissipation”, Int. J. Mod. Phys. D, 14, 749–774, (2005) 2.3, 6.1, 12, 12
ADS
MathSciNet
MATH
Google Scholar
Carter, B., and Khalatnikov, I.M., “Momentum, Vorticity and Helicity in Covariant Super-fluid Dynamics”, Ann. Phys. (N.Y.), 219, 243–265, (1992) 14.3, 16.1
ADS
MATH
Google Scholar
Carter, B., and Khalatnikov, I.M., “Canonically Covariant Formulation of Landau’s Newtonian Superfluid Dynamics”, Rev. Math. Phys., 6, 277–304, (1994) 16.1, 16.1
MathSciNet
MATH
Google Scholar
Carter, B., and Langlois, D., “The Equation of State for Cool Relativisitic Two Constituent Superfluid Dynamics”, Phys. Rev. D, 51, 5855–5864, (1995) 16.1
ADS
Google Scholar
Carter, B., and Langlois, D., “Kalb-Ramond Coupled Vortex Fibration Model for Relativistic Superfluid Dynamics”, Nucl. Phys. B, 454, 402–424, (1995) 6
ADS
MathSciNet
MATH
Google Scholar
Carter, B., and Langlois, D., “Relativistic Models for Superconducting-Superfluid Mixtures”, Nucl. Phys. B, 531, 478–504, (1998) 6, 16.1
ADS
MathSciNet
MATH
Google Scholar
Chandrasekhar, S., “Solutions of Two Problems in the Theory of Gravitational Radiation”, Phys. Rev. Lett., 24, 611–615, (1970) 8
ADS
Google Scholar
Chandrasekhar, S., and Friedman, J.L., “On the Stability of Axisymmetric Systems to Axisymmetric Perturbations in General Relativity. I. The Equations Governing Nonstationary, Stationary, and Perturbed Systems”, Astrophys. J., 175, 379–405, (1972) 13.4
ADS
MathSciNet
Google Scholar
Chandrasekhar, S., and Friedman, J.L., “On the Stability of Axisymmetric Systems to Axisymmetric Perturbations in General Relativity. II. A Criterion for the Onset of Instability in Uniformly Rotating Configurations and the Frequency of the Fundamental Mode in Case of Slow Rotation”, Astrophys. J., 176, 745–768, (1972). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/1972ApJ...176..745C 13.4
ADS
MathSciNet
Google Scholar
Clare, R.B., and Strottman, D., “Relativistic hydrodynamics and heavy ion reactions”, Phys. Rep., 141, 177–280, (1986) 15
ADS
Google Scholar
Comer, G.L., “Do Neutron Star Gravitational Waves Carry Superfluid Imprints?”, Found. Phys., 32, 1903–1942, (2002). Related online version (cited on 29 July 2002): http://arXiv.org/abs/astro-ph/0207608 8
MathSciNet
Google Scholar
Comer, G.L., and Joynt, R., “Relativistic mean field model for entrainment in general relativistic superfluid neutron stars”, Phys. Rev. D, 68, 12, 023002, (2003). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/2003PhRvD..68b3002C 5.2
ADS
Google Scholar
Comer, G.L., and Langlois, D., “Hamiltonian Formulation for Multi-constituent Relativistic Perfect Fluids”, Class. Quantum Grav., 10, 2317–2327, (1993) 6, 8, 9
ADS
MathSciNet
MATH
Google Scholar
Comer, G.L., and Langlois, D., “Hamiltonian Formulation for Relativistic Superfluids”, Class. Quantum Grav., 11, 709–721, (1994) 6, 8
ADS
MathSciNet
Google Scholar
Comer, G.L., Langlois, D., and Lin, L.M., “Quasinormal modes of general relativistic super-fluid neutron stars”, Phys. Rev. D, 60, 1–20, 104025, (1999) 10, 11.3
Google Scholar
Eckart, C., “The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid”, Phys. Rev., 58, 919–924, (1940) 1.1, 3, 6, 14, 14.1, 14.4
ADS
MATH
Google Scholar
Elze, H.-T., Hama, Y., Kodama, T., Makler, M., and Rafelski, J., “Variational Principle for Relativistic Fluid Dynamics”, J. Phys. G, 25, 1935–1957, (1999) 15
ADS
Google Scholar
Epstein, R.I., “Acoustic Properties of Neutron Stars”, Astrophys. J., 333, 880–894, (1988). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1988ApJ...333..880E 11.3
ADS
Google Scholar
Friedman, J.L., “Generic Instability of Rotating Relativistic Stars”, Commun. Math. Phys., 62, 247–278, (1978) 13.4
ADS
MATH
Google Scholar
Friedman, J.L., and Schutz, B.F., “On the Stability of Relativistic Systems”, Astrophys. J., 200, 204–220, (1975). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/1975ApJ...200..204F 13.4
ADS
MathSciNet
Google Scholar
Friedman, J.L., and Schutz, B.F., “Lagrangian Perturbation Theory of Nonrelativistic Fluids”, Astrophys. J., 221, 937–957, (1978). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/1978ApJ...221..937F 2.3, 6.1, 8, 13, 13.1, 13.1, 13.1, 13.1, 13.1, 13.4
ADS
MathSciNet
Google Scholar
Friedman, J.L., and Schutz, B.F., “Secular Instability of Rotating Newtonian Stars”, Astrophys. J., 222, 281–296, (1978). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/1978ApJ...222..281F 2.3, 6.1, 8, 13, 13.1, 13.1, 13.2, 13.4
ADS
Google Scholar
Gad-el Hak, M., “Fluid Mechanics from the Beginning to the Third Millennium”, Int. J. Engng. Ed., 14, 177–185, (1998) 1.2
Google Scholar
Geroch, R., “Relativistic theories of dissipative fluids”, J. Math. Phys., 36, 4226–4241, (1995) 14.4
ADS
MathSciNet
MATH
Google Scholar
Glendenning, N.K., Compact Stars: Nuclear Physics, Particle Physics and General Relativity, Astronomy and Astrophysics Library, (Springer, New York, U.S.A.; Berlin, Germany, 1997) 5.1, 5.2
MATH
Google Scholar
Gourgoulhon, E., “An Introduction to Relativistic Hydrodynamics”, in Rieutord, M., and Dubrulle, B., eds., Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, Aussois and Cargese, France, September 2004 and May 2005, EAS Publications Series, 43–79, (EDP Sciences, Les Ulis, France, 2006). Related online version (cited on 28 April 2006): http://arXiv.org/abs/gr-qc/0603009 2
Google Scholar
Grad, H., “On the Kinetic Theory of Rarefied Gases”, Commun. Pure Appl. Math., 2, 331–407, (1949) 14, 14.2
MathSciNet
MATH
Google Scholar
Hartle, J.B., Gravity: An Introduction to Einstein’s General Relativity, (Addison Wesley, San Francisco, U.S.A., 2003) 2
Google Scholar
Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979) 3
MATH
Google Scholar
Hiscock, W.A., and Lindblom, L., “Stability and Causality in Dissipative Relativistic Fluids”, Ann. Phys. (N.Y.), 151, 466–496, (1983) 14, 14.2, 14.2, 14.2
ADS
MathSciNet
MATH
Google Scholar
Hiscock, W.A., and Lindblom, L., “Generic instabilities in first-order dissipative relativistic fluid theories”, Phys. Rev. D, 31, 725–733, (1985) 1.1, 14, 14.1
ADS
MathSciNet
Google Scholar
Hiscock, W.A., and Lindblom, L., “Linear Plane Waves in Dissipative Relativistic Fluids”, Phys. Rev. D, 35, 3723–3732, (1987) 14
ADS
MathSciNet
Google Scholar
Hiscock, W.A., and Lindblom, L., “Nonlinear pathologies in relativistic heat-conducting fluid theories”, Phys. Lett. A, 131, 509–513, (1988) 14.2
ADS
Google Scholar
Israel, W., and Stewart, J.M., “On transient relativistic thermodynamics and kinetic theory. II”, Proc. R. Soc. London, Ser. A, 365, 43–52, (1979) 1.1, 14, 14.2, 14.4
ADS
MathSciNet
Google Scholar
Israel, W., and Stewart, J.M., “Transient Relativistic Thermodynamics and Kinetic Theory”, Ann. Phys. (N.Y.), 118, 341–372, (1979) 1.1, 14, 14.2, 14.2, 14.2, 14.4
ADS
MathSciNet
Google Scholar
Kapusta, J., “Viscous Heating of Expanding Fireballs”, Phys. Rev. C, 24, 2545–2551, (1981) 15
ADS
Google Scholar
Katz, J., “Relativistic Potential Vorticity”, Proc. R. Soc. London, Ser. A, 391, 415–418, (1984) 6.2
ADS
MathSciNet
MATH
Google Scholar
Khalatnikov, I.M., An Introduction to the Theory of Superfluidity, (W.A. Benjamin, New York, U.S.A., 1965) 16
Google Scholar
Khalatnikov, I.M., and Lebedev, V.V., “Relativistic Hydrodynamics of a Superfluid Liquid”, Phys. Lett. A, 91, 70–72, (1982) 16.1, 16.1
ADS
Google Scholar
Kokkotas, K.D., and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 29 April 2006): http://www.livingreviews.org/lrr-1999-2 6.1
Kreiss, H.-O., Nagy, G.B., Ortiz, O.E., and Reula, O.A., “Global existence and exponential decay for hyperbolic dissipative relativistic fluid theories”, J. Math. Phys., 38, 5272–5279, (1997). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1997JMP......38.5272K 14.2
ADS
MathSciNet
MATH
Google Scholar
Lanczos, C., The Variational Principles of Mechanics, (University of Toronto Press, Toronto, Canada, 1949) 1.1, 7
MATH
Google Scholar
Landau, L.D., and Lifshitz, E.M., Fluid Mechanics, vol. 6 of Course of Theoretical Physics, (Pergamon; Addison-Wesley, London, U.K.; Reading, U.S.A., 1959) 1.1, 6.2, 14, 14.1, 14.4
Google Scholar
Langlois, D., Sedrakian, D.M., and Carter, B., “Differential Rotation of Relativistic Super-fluids in Neutron Stars”, Mon. Not. R. Astron. Soc., 297, 1189–1201, (1998) 6, 8
ADS
Google Scholar
Lautrup, J.B., Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, (Institute of Physics Publishing, Bristol, U.K.; Philadelphia, U.S.A., 2005) 4
MATH
Google Scholar
Lebedev, V.V., and Khalatnikov, I.M., “Relativistic Hydrodynamics of a Superfluid”, Sov. Phys. JETP, 56, 923–930, (1982) 16.1, 16.1
Google Scholar
Lee, U., “Nonradial oscillations of neutron stars with the superfluid core”, Astron. Astrophys., 303, 515–525, (1995). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1995A&A...303..515L 11.3
ADS
Google Scholar
Levi-Civita, T., “Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana”, Rend. Circ. Mat. Palermo, 42, 173–205, (1917) 2.2
MATH
Google Scholar
Lichnerowicz, A., Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions, (Benjamin, New York, U.S.A., 1967) 1.1, 6.2
MATH
Google Scholar
Lindblom, L., “The Relaxation Effect in Dissipative Relativistic Fluid Theories”, Ann. Phys. (N.Y.), 247, 1–18, (1996). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/1996AnPhy.247....1L 14.4
ADS
MathSciNet
MATH
Google Scholar
Lindblom, L., and Mendell, G., “Does Gravitational Radiation Limit the Angular Velocities of Superfluid Neutron Stars?”, Astrophys. J., 444, 804–809, (1995). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1995ApJ...444..804L 11.3
ADS
Google Scholar
Lockitch, K.H., and Friedman, J.L., “Where are the r-Modes of Isentropic Stars?”, Astrophys. J., 521, 764–788, (1999). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/1999ApJ...521..764L 13.3, 13.3
ADS
Google Scholar
Lovelock, D., and Rund, H., Tensors, Differential Forms, and Variational Principles, (Dover Publications, New York, U.S.A., 1989). Corrected and revised republication of the 1975 edition 2.2
MATH
Google Scholar
McDermott, P.N., Van Horn, H.M., and Hansen, C.J., “Nonradial Oscillations of Neutron Stars”, Astrophys. J., 325, 725–748, (1988). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1988ApJ...325..725M 11.3
ADS
Google Scholar
Mendell, G., “Superfluid Hydrodynamics in Rotating Neutron Stars. I. Nondissipative Equations”, Astrophys. J., 380, 515–529, (1991). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1991ApJ...380..515M 11.3
ADS
MathSciNet
Google Scholar
Mendell, G., “Superfluid Hydrodynamics in Rotating Neutron Stars. II. Dissipative Effects”, Astrophys. J., 380, 530–540, (1991). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1991ApJ...380..530M 16.1
ADS
MathSciNet
Google Scholar
Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973) 1.3, 2, 3, 5.1, 6.2, 8, 8
Google Scholar
Muller, I., “Zum Paradox der Warmeleitungstheorie”, Z. Phys., 198, 329–344, (1967) 14, 14.2
ADS
MATH
Google Scholar
Muronga, A., “Second-Order Dissipative Fluid Dynamics for Ultrarelativistic Nuclear Collisions”, Phys. Rev. Lett., 88, 062302, (2002). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/2001nucl.th...4064M 15
ADS
Google Scholar
Muronga, A., “Causal theories of dissipative relativistic fluid dynamics for nuclear collisions”, Phys. Rev. C, 69, 16, 034903, (2004). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/2003nucl.th...9055M 15
Google Scholar
Olson, T.S., “Maximally incompressible neutron star matter”, Phys. Rev. C, 63, 7, 015802, (2001). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/2001PhRvC..63a5802O 14.2
Google Scholar
Olson, T.S., and Hiscock, W.A., “Effects of frame choice on nonlinear dynamics in relativistic heat-conducting fluid theories”, Phys. Lett. A, 141, 125–130, (1989) 14.2
ADS
Google Scholar
Olson, T.S., and Hiscock, W.A., “Relativistic dissipative hydrodynamics and the nuclear equation of state”, Phys. Rev. C, 39, 1818–1826, (1989) 14.2
ADS
Google Scholar
Olson, T.S., and Hiscock, W.A., “Stability, causality, and hyperbolicity in Carter’s “regular” theory of relativistic heat-conducting fluids”, Phys. Rev. D, 41, 3687–3695, (1990) 14.3
ADS
MathSciNet
MATH
Google Scholar
Pauli, W., Theory of Relativity, (Dover Publications, New York, U.S.A., 1981). Reprint of English 1958 edition 2.2
MATH
Google Scholar
Priou, D., “Comparison Between Variational and Traditional Approaches to Relativistic Thermodynamics of Dissipative Fluids”, Phys. Rev. D, 43, 1223–1234, (1991) 14.3
ADS
MathSciNet
Google Scholar
Prix, R., Aspects de l’Hydrodynamique Superfluide des Étoiles à Neutrons, Ph.D. Thesis, (Universite de Paris XI, Paris, France, 2000) 6
Google Scholar
Prix, R., “Variational description of multifluid hydrodynamics: Uncharged fluids”, Phys. Rev. D, 69, 20, 043001, (2004). Related online version (cited on 14 December 2006): http://adsabs.harvard.edu/abs/2002physics...9024P 6, 12, 12
Google Scholar
Pujol, C., and Davesne, D., “Relativistic dissipative hydrodynamics with spontaneous symmetry breaking”, Phys. Rev. C, 67, 014901, (2003). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/2003PhRvC..67a4901P 16.2
ADS
Google Scholar
Pullin, D.I., and Saffman, P.G., “Vortex Dynamics in Turbulence”, Annu. Rev. Fluid Mech., 30, 31–51, (1998) 6.2
ADS
MathSciNet
MATH
Google Scholar
Putterman, S.J., Superfluid Hydrodynamics, (North-Holland, Amsterdam, Netherlands, 1974) 4, 10, 12, 16
Google Scholar
Radhakrishnan, V., and Manchester, R.N., “Detection of a Change of State in the Pulsar PSR 0833-45”, Nature, 222, 228, (1969) 10
ADS
Google Scholar
Reichl, L.E., A Modern Course in Statistical Physics, (University of Texas Press, Austin, U.S.A., 1984) 1.1, 5, 5.1
MATH
Google Scholar
Reichley, P.E., and Downs, G.S., “Observed Decrease in the Periods of Pulsar PSR 0833-45”, Nature, 222, 229–230, (1969) 10
ADS
Google Scholar
Reisenegger, A., and Goldreich, P., “A New Class of g-modes in Neutron Stars”, Astrophys. J., 395, 240–249, (1992). Related online version (cited on 29 April 2006): http://adsabs.harvard.edu/abs/1992ApJ...395..240R 11.2
ADS
Google Scholar
Schouten, J.A., Tensor Analysis for Physicists, (Dover Publications, New York, U.S.A., 1989), 2nd edition. Reprint of 1954 edition 2.3
MATH
Google Scholar
Schroeder, D.V., An Introduction to Thermal Physics, (Addison Wesley, San Francisco, U.S.A., 2000) 3
Google Scholar
Schutz, B.F., “Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle”, Phys. Rev. D, 2, 2762–2773, (1970) 6
ADS
MathSciNet
MATH
Google Scholar
Schutz, B.F., “Linear Pulsations and Stability of Differentially Rotating Stellar Models. I. Newtonian Analysis”, Astrophys. J., 24, 319–342, (1972). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/1972ApJS...24..319S 13.4
ADS
Google Scholar
Schutz, B.F., “Linear Pulsations and Stability of Differentially Rotating Stellar Models. II. General-Relativistic Analysis”, Astrophys. J., 24, 343–374, (1972). Related online version (cited on 28 April 2006): http://adsabs.harvard.edu/abs/1972ApJS...24..343S 13.4
ADS
Google Scholar
Schutz, B.F., Geometrical Methods of Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1980) 2.3
MATH
Google Scholar
Smarr, L.L., and York Jr, J.W., “Kinematical conditions in the construction of spacetime”, Phys. Rev. D, 17, 2529–2551, (1978) 3, 6.1
ADS
MathSciNet
Google Scholar
Son, D.T., “Hydrodynamics of Relativistic Systems with Broken Continuous Symmetries”, Int. J. Mod. Phys. A, 16, 1284–1286, (2001). Related online version (cited on 14 December 2006): http://arXiv.org/abs/hep-ph/0011246 16.2, 16.2
ADS
Google Scholar
Stewart, J.M., “On transient relativistic thermodynamics and kinetic theory”, Proc. R. Soc. London, Ser. A, 357, 59–75, (1977) 14, 14.2, 14.4
ADS
MathSciNet
Google Scholar
Taub, A.H., “General Relativistic Variational Principle for Perfect Fluids”, Phys. Rev., 94, 1468–1470, (1954) 6, 17
ADS
MathSciNet
Google Scholar
Taylor, E.F., and Wheeler, J.A., Spacetime Physics: Introduction to Special Relativity, (W.H. Freeman, New York, U.S.A., 1992), 2nd edition 2
Google Scholar
Tilley, D.R., and Tilley, J., Superfluidity and Superconductivity, (Adam Hilger, Bristol, U.K., 1990), 3rd edition 10, 12, 16
Google Scholar
Tokaty, G.A., A History and Philosophy of Fluid Mechanics, (Dover Publications, New York, U.S.A., 1994). Reprint of 1971 edition 1.2, 1.2
MATH
Google Scholar
Tolman, R.C., Relativity, Thermodynamics, and Cosmology, (Dover Publications, New York, U.S.A., 1987). Reprint of 1934 edition 1.1
MATH
Google Scholar
Vollhardt, D., and Wölfle, P., The Superfluid Phases of Helium 3, (Taylor & Francis, London, U.K.; New York, U.S.A., 2002) 12
MATH
Google Scholar
Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984) 2, 2, A
MATH
Google Scholar
Walecka, J.D., Theoretical Nuclear and Subnuclear Physics, vol. 16 of Oxford Studies in Nuclear Physics, (Oxford University Press, New York, U.S.A.; Oxford, U.K., 1995) 5.2
Google Scholar
Weber, F., Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, (Institute of Physics Publishing, Bristol, UK; Philadelphia, U.S.A., 1999) 5.2
Google Scholar
Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (Wiley, New York, U.S.A., 1972) 2, 10
Google Scholar
Weyl, H., Space, Time, Matter, (Dover Publications, New York, U.S.A., 1952), 4th edition. Reprint of 1922 edition 2.2, 2.2
Google Scholar
Will, C.M., Was Einstein Right?: Putting General Relativity to the Test, (Basic Books, New York, U.S.A., 1986) 2
Google Scholar
Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition 2
MATH
Google Scholar
Will, C.M., “Was Einstein Right? Testing Relativity at the Centenary”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, (World Scientific, Singapore; Hackensack, U.S.A., 2005). Related online version (cited on 28 April 2006): http://arXiv.org/abs/gr-qc/05040862 2
Google Scholar
Will, C.M., “Special Relativity: A Centenary Perspective”, in Damour, T., Darrigol, O., Duplantier, B., and Rivasseau, V., eds., Einstein, 1905–2005: Poincaré Seminar 2005, Séminaire Poincaré, IHP, Paris, 9 April 2005, 33–58, (Birkhäuser, Basel, Switzerland; Boston, U.S.A.; Berlin, Germany, 2006). Related online version (cited on 28 April 2006): http://arXiv.org/abs/gr-qc/0504085 2
Google Scholar
Wilson, J.R., and Mathews, G.J., Relativistic Numerical Hydrodynamics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2003) 1.1
MATH
Google Scholar
York Jr, J.W., “Role of Conformal Three-Geometry in the Dynamics of Gravitation”, Phys. Rev. Lett., 28, 1082–1085, (1972) 8
ADS
Google Scholar
Zhang, S., “Study on Two Coupled Relativistic Superfluids with Spontaneous Symmetry Breaking”, Phys. Lett. A, 307, 93–98, (2002). Related online version (cited on 14 December 2006): http://arXiv.org/abs/hep-ph/0206234 16.2
ADS
MATH
Google Scholar