International Numerical Relativity Group, “Jean-Luc Movies: /AEI2001/NeutronStars”, (June, 2002), [Online HTML Document]: cited on 19 June 2002, http://jean-luc.ncsa.uiuc.edu/Movies/AEI2001/NeutronStars/. 14
Google Scholar
Abramowicz, M.A., and Kluźniak, W., “A precise determination of angular momentum in the black hole candidate GRO J1655-40”, Astron. Astrophys., 374, L19–L20, (2001). For a related online version see: M.A. Abramowicz, et al., “A precise determination of angular momentum in the black hole candidate GRO J1655-40”, (May, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0105077. 2.10.1
Article
ADS
Google Scholar
Abramowicz, M.A., Kluźniak, W., and Lasota, J.-P., “The Centrifugal Force Reversal and X-ray Bursts”, Astron. Astrophys., 374, L16–L18, (2001). For a related online version see: M.A. Abramowicz, et al., “The Centrifugal Force Reversal and X-ray Bursts”, (May, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0105324. 2.10.2
Article
ADS
Google Scholar
Alcubierre, M., Brügmann, B., Dramlitsch, T., Font, J.A., Papadopoulos, P., Seidel, E., Stergioulas, N., and Takahashi, R., “Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments”, Phys. Rev. D, 62, 044034–1–044034–16, (2000). For a related online version see: M. Alcubierre, et al., “Towards a Stable Numerical Evolution of Strongly Gravitating Systems in General Relativity: The Conformal Treatments”, (March, 2000), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/gr-qc/0003071. 4
Article
ADS
Google Scholar
Amsterdamski, P., Bulik, T., Gondek-Rosińska, D., and Kluźniak, W., “Low-mass Quark Stars as Maclaurin Spheroids”, Astron. Astrophys., 381, L21–L24, (2002). For a related online version see: P. Amsterdamski, et al., “Low-mass Quark Stars as Maclaurin Spheroids”, (December, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0012547. 2.10.1
Article
ADS
Google Scholar
Andersson, N., “A New Class of Unstable Modes of Rotating Relativistic Stars”, Astrophys. J., 502, 708–713, (1998). For a related online version see: N. Andersson, “A New Class of Unstable Modes of Rotating Relativistic Stars”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9706075. 3.5.1, 3.5.3
Article
ADS
Google Scholar
Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum Grav., 20, R105–R144, (2003). For a related online version see: N. Andersson, “Gravitational waves from instabilities in relativistic stars”, (February, 2002), [Online Los Alamos Archive Preprint]: cited on 3 April 2003, http://www.arxiv.org/abs/gr-qc/astro-ph/0211151. 3.5.3
Article
ADS
MathSciNet
MATH
Google Scholar
Andersson, N., and Comer, G.L., “Probing neutron star superfluidity with gravitational-wave data”, Phys. Rev. Lett., 87, 241101, (2001). For a related online version see: N. Andersson, et al., “Probing neutron star superfluidity with gravitational-wave data”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc0110112. 3.2
Article
ADS
Google Scholar
Andersson, N., and Comer, G.L., “Slowly Rotating General Relativistic Superfluid Neutron Stars”, Class. Quantum Grav., 18, 969–1002, (2001). For a related online version see: N. Andersson, et al., “Slowly Rotating General Relativistic Superfluid Neutron Stars”, (September, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0009089. 2.6.2
Article
ADS
MATH
Google Scholar
Andersson, N., Comer, G.L., and Langlois, D., “Oscillations of general relativistic superfluid neutron stars”, Phys. Rev. D, 66, 104002–1–104002–22, (2002). For a related online version see: N. Andersson, et al., “Oscillations of General Relativistic Superfluid Neutron Stars”, (March, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0203039. 3.2
Article
ADS
Google Scholar
Andersson, N., Jones, D.I., and Kokkotas, K.D., “Strange stars as persistent sources of gravitational wave”, Mon. Not. R. Astron. Soc., 337, 1224–1232, (2002). For a related online version see: N. Andersson, et al., “Strange stars as persistent sources of gravitational waves”, (November, 2001), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/astro-ph/0111582. 9, 3.5.3, 3.5.3
Article
ADS
Google Scholar
Andersson, N., Jones, D.I., Kokkotas, K.D., and Stergioulas, N., “R-Mode Runaway and Rapidly Rotating Neutron Stars”, Astrophys. J., 534, L75–L78, (2000). For a related online version see: N. Andersson, et al., “R-Mode Runaway and Rapidly Rotating Neutron Stars”, (February, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0002114. 2.9.3, 3.5.3
Article
ADS
Google Scholar
Andersson, N., and Kokkotas, K.D., “Gravitational Waves and Pulsating Stars: What Can We Learn from Future Observations?”, Phys. Rev. Lett., 77, 4134–4137, (1996). For a related online version see: N. Andersson, et al., “Gravitational Waves and Pulsating Stars: What Can We Learn from Future Observations?”, (October, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9610035. 3
Article
ADS
Google Scholar
Andersson, N., and Kokkotas, K.D., “The R-Mode Instability in Rotating Neutron Stars”, Int. J. Mod. Phys. D, 10, 381–441, (2001). For a related online version see: N. Andersson, et al., “The R-Mode Instability in Rotating Neutron Stars”, (October, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0010102. 3.5.3
Article
ADS
Google Scholar
Andersson, N., Kokkotas, K.D., and Schutz, B.F., “A new numerical approach to the oscillation modes of relativistic stars”, Mon. Not. R. Astron. Soc., 274, 1039–1048, (1995). For a related online version see: N. Andersson, et al., “A new numerical approach to the oscillation modes of relativistic stars”, (March, 1995), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9503014. 3.4.1
ADS
Google Scholar
Andersson, N., Kokkotas, K.D., and Schutz, B.F., “Gravitational Radiation Limit on the Spin of Young Neutron Stars”, Astrophys. J., 510, 846–853, (1999). For a related online version see: N. Andersson, et al., “Gravitational Radiation Limit on the Spin of Young Neutron Stars”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9805225. 3.5.3
Article
ADS
Google Scholar
Andersson, N., Kokkotas, K.D., and Stergioulas, N., “On the Relevance of the r-mode Instability for Accreting Neutron Stars and White Dwarfs”, Astrophys. J., 516, 307–314, (1999). For a related online version see: N. Andersson, et al., “On the Relevance of the r-mode Instability for Accreting Neutron Stars and White Dwarfs”, (June, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9806089. 3.5.3
Article
ADS
Google Scholar
Ansorg, M., Kleinwächter, A., and Meinel, R., “Highly Accurate Calculation of Rotating Neutron Stars: Detailed Description of the Numerical Methods”, (January, 2003), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/astro-ph/0301173. 2.7.6
Book
MATH
Google Scholar
Ansorg, M., Kleinwächter, A., and Meinel, R., “Highly accurate calculation of rotating neutron stars”, Astron. Astrophys., 381, L49–L52, (2002). For a related online version see: M. Ansorg, et al., “Highly accurate calculation of rotating neutron stars”, (November, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/011108. 2.7, 2.7.6, 2.7.7, 2.7.8
Article
ADS
MATH
Google Scholar
Arnett, W.D., and Bowers, R.L., “A Microscopic Interpretation of Neutron Star Structure”, Astrophys. J. Suppl. Ser., 33, 415–436, (1977). 2.6.2, 2.9.3
Article
ADS
Google Scholar
Arras, P., Flanagan, E.E., Morsink, S.M., Schenk, A.K., Teukolsky, S.A., and Wasserman, I., “Saturation of the R-mode Instability”, (February, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0202345. 3.5.3, 3.5.3
Google Scholar
Asada, H., and Shibata, M., “Formulation for Nonaxisymmetric Uniformly Rotating Equilibrium Configurations in the Second Post-Newtonian Approximation of General Relativity”, Prog. Theor. Phys., 96, 81–112, (1996). For a related online version see: H. Asada, et al., “Formulation for Nonaxisymmetric Uniformly Rotating Equilibrium Configurations in the Second Post-Newtonian Approximation of General Relativity”, (September, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9609024. 2.7.8
Article
ADS
Google Scholar
Bardeen, J.M., “A variational principle for rotating stars in general relativity”, Astrophys. J., 162, 71–95, (1970). 2.2
Article
ADS
MathSciNet
Google Scholar
Bardeen, J.M., “Rapidly rotating stars, disks, and black holes”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Les Houches 1972, 241–289, (Gordon & Breach, New York, 1973). 2.2, 2.2
Google Scholar
Bardeen, J.M., and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates and equations”, Phys. Rep., 96, 205-250, (1983). 4, 4.3.1
Bardeen, J.M., and Wagoner, R.V., “Relativistic Disks. I. Uniform Rotation”, Astrophys. J., 167, 359–423, (1971). 2.2
Article
ADS
MathSciNet
Google Scholar
Battiston, L., Cazzola, P., and Lucaroni, L., “Stability of nonradial oscillations of cold nonrotating neutron stars”, Nuovo Cimento B, 3, 295–317, (1971). 3.4.2
Article
ADS
Google Scholar
Baumgarte, T.W., and Shapiro, S.L., “Radiation of Angular Momentum by Neutrinos from Merged Binary Neutron Stars”, Astrophys. J., 504, 431–441, (1998). For a related online version see: T.W. Baumgarte, et al., “Radiation of Angular Momentum by Neutrinos from Merged Binary Neutron Stars”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9801294. 3.5.5
Article
ADS
Google Scholar
Baumgarte, T.W., Shapiro, S.L., and Shibata, M., “Stuart L. Shapiro’s Movies”, (June, 2002), [Online HTML Document]: cited on 19 June 2002, http://www.physics.uiuc.edu/Research/cta/Shapiro/movies.html. With the assistance of the Illinois Undergraduate Research Team. 16, 17
Google Scholar
Baumgarte, T.W., Shapiro, S.L., and Shibata, M., “On the maximum mass of differentially rotating neutron stars”, Astrophys. J., 528, L29–L32, (2000). For a related online version see: T.W. Baumgarte, et al., “On the maximum mass of differentially rotating neutron stars”, (October, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9910565. 2.9.3
Article
ADS
Google Scholar
Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing the Delayed Collapse of Hot Neutron Stars to Black Holes”, Astrophys. J., 458, 680–691, (1996). 2.9.7
Article
ADS
Google Scholar
Baumgarte, T.W., and S.L., Shapiro, “Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007–1–024007–7, (1999). For a related online version see: T.W. Baumgarte, et al., “On the Numerical Integration of Einstein’s Field Equations”, (October, 1998), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/gr-qc/9810065. 4
Article
ADS
MathSciNet
MATH
Google Scholar
Bhattacharyya, S., Temperature Profiles and Spectra of Accretion Disks around Rapidly Rotating Neutron Stars, PhD Thesis, (Indian Institute of Science, Bangalore, India, 2001). For a related online version see: S. Bhattacharyya, “Temperature Profiles and Spectra of Accretion Disks around Rapidly Rotating Neutron Stars”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0205133. 2.10.2
Google Scholar
Bhattacharyya, S., “A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four low mass X-ray binaries”, Astron. Astrophys., 383, 524–532, (2002). For a related online version see: S. Bhattacharyya, “A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four Low Mass X-ray Binaries”, (December, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0112178. 2.10.2
Article
ADS
Google Scholar
Bildsten, L., “Gravitational Radiation and Rotation of Accreting Neutron Stars”, Astrophys. J., 501, L89–L93, (1998). For a related online version see: L. Bildsten, “Gravitational Radiation and Rotation of Accreting Neutron Stars”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9804325. 2.9.3, 3.5.3
Article
ADS
Google Scholar
Blanchet, L., “Post-Newtonian Theory and its Application”, in Shibata, M., ed., Proceedings of the 12th Workshop on General Relativity and Gravitation. in press, (2003). For a related online version see: L. Blanchet, “Post-Newtonian Theory and its Application”, (April, 2003), [Online Los Alamos Archive Preprint]: cited on 4 April 2003, http://www.arxiv.org/abs/gr-qc/0304014. 3.4.3
Google Scholar
Bocquet, M., Bonazzola, S., Gourgoulhon, E., and Novak, J., “Rotating neutron star models with a magnetic field”, Astron. Astrophys., 301, 757–775, (1995). For a related online version see: M. Bocquet, et al., “Rotating neutron star models with magnetic field”, (March, 1995), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9503044. 2.9.6
ADS
Google Scholar
Bodmer, A.R., “Collapsed Nuclei”, Phys. Rev. D, 4, 1601–1606, (1971). 2.6.3, 2.9.8
Article
ADS
Google Scholar
Bonazzola, S. Frieben, J., and Gourgoulhon, E., “Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General Relativity: Influence of the 3D-shift Vector”, Astron. Astrophys., 331, 280–290, (1998). For a related online version see: J. Bonazzola, S. Frieben, et al., “Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General Relativity: Influence of the 3D-shift Vector”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9710121. 3.5.2, 3.5.6
ADS
Google Scholar
Bonazzola, S., “The virial theorem in general relativity”, Astrophys. J., 182, 335–340, (1973). 2.7.7
Article
ADS
Google Scholar
Bonazzola, S., Frieben, J., and Gourgoulhon, E., “Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General Relativity”, Astrophys. J., 460, 379–389, (1996). For a related online version see: S. Bonazzola, et al., “Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General Relativity”, (September, 1995), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9509023. 3.5.4, 3.5.6
Article
ADS
Google Scholar
Bonazzola, S., Frieben, J., Gourgoulhon, E., and Marck, J.-A., “Spectral Methods in General Relativity — Towards the Simulation of 3D-Gravitational Collapse of Neutron Stars”, in Proceedings of the Third International Conference on Spectral and High Order Methods, Houston Journal of Mathematics, (1996). For a related online version see: S. Bonazzola, et al., “Spectral Methods in General Relativity — Towards the Simulation of 3D-Gravitational Collapse of Neutron Stars”, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9604029. 2.7.8
Google Scholar
Bonazzola, S., and Gourgoulhon, E., “A virial identity applied to relativistic stellar models”, Class. Quantum Grav., 11, 1775–1784, (1994). 2.7.4, 2.7.7
Article
ADS
MathSciNet
MATH
Google Scholar
Bonazzola, S., and Gourgoulhon, E., “Gravitational Waves from Pulsars: Emission by the Magnetic Field Induced Distortion”, Astron. Astrophys., 312, 675–690, (1996). For a related online version see: S. Bonazzola, et al., “Gravitational Waves from Pulsars: Emission by the Magnetic Field Induced Distortion”, (February, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9602107. 3.5.5
ADS
Google Scholar
Bonazzola, S., and Gourgoulhon, E., “Gravitational Waves from Neutron Stars”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation: Proceedings of the Les Houches School of Physics, 26 September–6 October, 1995, Cambridge Contemporary Astrophysics, 151, (Cambridge University Press, Cambridge, 1997). For a related online version see: S. Bonazzola, et al., “Gravitational Waves from Neutron Stars”, (May, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9605187. 3.5.5
Google Scholar
Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Numerical Approach for High Precision 3-D Relativistic Star Models”, Phys. Rev. D, 58, 104020, (1998). For a related online version see: S. Bonazzola, et al., “Numerical Approach for High Precision 3-D Relativistic Star Models”, (March, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9803086. 2.7, 2.7.5
Article
ADS
Google Scholar
Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.-A., “Axisymmetric rotating relativistic bodies: A new numerical approach for’ exact’ solutions”, Astron. Astrophys., 278, 421–443, (1993). 2.7, 2.7.4, 2.7.7, 2.9.6, 4
ADS
MathSciNet
Google Scholar
Bonazzola, S., and Schneider, S., “An Exact Study of Rigidly and Rapidly Rotating Stars in General Relativity with Application to the Crab Pulsar”, Astrophys. J., 191, 195–290, (1974). 2.7
Article
Google Scholar
Boyer, R.H., and Lindquist, R.W., “A variational principle for a rotating relativistic fluid”, Phys. Lett., 20, 504–506, (1966). 2.5
Article
ADS
MathSciNet
Google Scholar
Brecher, K., and Caporaso, G., “Obese’ neutron’ stars”, Nature, 259, 377, (1976). 2.6.3
Article
ADS
Google Scholar
Brown, G.E., and Bethe, H.A., “A Scenario for a Large Number of Low-Mass Black Holes in the Galaxy”, Astrophys. J., 423, 659–664, (1994). 2.6.2, 2.9.7
Article
ADS
Google Scholar
Burderi, L., and D’Amico, N., “Probing the Equation of State of Ultradense Matter with a Submillisecond Pulsar Search Experiment”, Astrophys. J., 490, 343–352, (1997). 2.9.3
Article
ADS
Google Scholar
Burderi, L., Possenti, A., D’Antona, F., Di Salvo, T., Burgay, M., Stella, L., Menna, M.T., Iaria, R., Campana, S., and d’Amico, N., “Where May Ultrafast Rotating Neutron Stars Be Hidden?”, Astrophys. J., 560, L71–L74, (2001). For a related online version see: L. Burderi, et al., “Where May Ultrafast Rotating Neutron Stars Be Hidden?”, (September, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0109088. 2.9.3
Article
ADS
Google Scholar
Butterworth, E.M., “On the structure and stability of rapidly rotating fluid bodies in general relativity. II — The structure of uniformly rotating pseudopolytropes”, Astrophys. J., 204, 561–572, (1976). 2.7.2
Article
ADS
MathSciNet
Google Scholar
Butterworth, E.M., and Ipser, J.R., “On the structure and stability of rapidly rotating fluid bodies in general relativity. I — The numerical method for computing structure and its application to uniformly rotating homogeneous bodies”, Astrophys. J., 204, 200–223, (1976). 2.4, 2.4, 2.7, 2.7.2
Article
ADS
MathSciNet
Google Scholar
Carroll, B.W., Zweibel, E.G., Hansen, C.J., McDermott, P.N., Savedoff, M.P., Thomas, J.H., and Van Horn, H.M., “Oscillation Spectra of Neutron Stars with Strong Magnetic Fields”, Astrophys. J., 305, 767–783, (1986). 3.1
Article
ADS
Google Scholar
Carter, B., “Killing Horizons and Orthogonally Transitive Groups in Space-Time”, J. Math. Phys., 10, 70–81, (1969). 2.2
Article
ADS
MathSciNet
MATH
Google Scholar
Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun. Math. Phys., 17, 233–238, (1970). 2.2
Article
ADS
MathSciNet
MATH
Google Scholar
Chandrasekhar, S., An introduction to the study of stellar structure, (University of Chicago Press, Chicago, 1939). 2.7.7
MATH
Google Scholar
Chandrasekhar, S., “Solutions of Two Problems in the Theory of Gravitational Radiation”, Phys. Rev. Lett., 24, 611–615, (1970). 3.5.1, 3.5.2
Article
ADS
Google Scholar
Chandrasekhar, S., and Ferrari, V., “On the non-radial oscillations of slowly rotating stars induced by the Lense-Thirring effect”, Proc. R. Soc. London, Ser. A, 433, 423–440, (1991). 3, 3.4.1, 3.4.2
ADS
MATH
Google Scholar
Cheng, K.S., and Harko, T., “Approximate mass and radius formulas for static and rotating strange stars”, Phys. Rev. D, 62, 083001–1–083001–9, (2000). 2.9.8
Article
ADS
Google Scholar
Choptuik, M.W., Hirschmann, E.W., Liebling, S.L., and Pretorius, F., “An Axisymmetric Gravitational Collapse Code”, (January, 2003), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/gr-qc/0301006. 4.3.1
Book
MATH
Google Scholar
Clement, M.J., “Normal modes of oscillation for rotating stars. I — The effect of rigid rotation on four low-order pulsations”, Astrophys. J., 249, 746–760, (1981). 3
Article
ADS
Google Scholar
Colella, P., and Woodward, P.R., “The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations”, J. Comput. Phys., 54, 174–201, (1984). 4.1.1
Article
ADS
MATH
Google Scholar
Colpi, M., and Miller, J.C., “Rotational properties of strange stars”, Astrophys. J., 388, 513–520, (1992). 2.9.8
Article
ADS
Google Scholar
Comer, G.L., Langlois, D., and Lin, L.M., “Quasinormal modes of general relativistic superfluid neutron stars”, Phys. Rev. D, 60, 104025–1–104025–20, (1999). For a related online version see: G.L. Comer, et al., “Quasi-Normal Modes of General Relativistic Superfluid Neutron Stars”, (August, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/9908040. 3.2
Article
ADS
Google Scholar
Comins, N., and Schutz, B.F., “On the ergoregion instability”, Proc. R. Soc. London, Ser. A 364, 211–226, (1978). 2.2
Article
ADS
MathSciNet
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Spin-up of a rapidly rotating star by angular momentum loss — Effects of general relativity”, Astrophys. J., 398, 203–223, (1992). 2.7.3, 2.9.1, 2.9.5, 3.3.1
Article
ADS
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Rapidly rotating neutron stars in general relativity: Realistic equations of state”, Astrophys. J., 424, 823–845, (1994). 2.7.3, 2.9.1, 2.9.3, 2.9.5
Article
ADS
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Rapidly rotating polytropes in general relativity”, Astrophys. J., 422, 227–242, (1994). 2.7.3, 2.9.1, 2.9.5
Article
ADS
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Recycling pulsars to millisecond periods in general relativity”, Astrophys. J., 423, L117–L120, (1994). 2.10.1
Article
ADS
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Testing a simplified version of Einstein’s equations for numerical relativity”, Phys. Rev. D, 53, 5533–5540, (1996). For a related online version see: G.B. Cook, et al., “Testing a simplified version of Einstein’s equations for numerical relativity”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/9512009. 4.1.2
Article
ADS
MathSciNet
Google Scholar
Cottam, J., Paerels, F., and Mendez, M., “Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star”, Nature, 420, 51–54, (2002). For a related online version see: J. Cottam, et al., “Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star”, (November, 2002), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/astro-ph/0211126. 2.6.2
Article
ADS
Google Scholar
Crawford, F., Kaspi, V.M., and Bell, J.F., “A Search for Sub-millisecond Pulsations in Unidentified FIRST and NVSS Radio Sources”, in Kramer, M., Wex, N., and Wielebinski, N., eds., Pulsar Astronomy — 2000 and beyond, volume 202 of ASP Conference Series, 31, (Astronomical Society of the Pacific, San Francisco, 2000). 2.9.3
ADS
Google Scholar
Cumming, A., Morsink, S.M., Bildsten, L., Friedman, J.L., and Holz, D., “Hydrostatic Expansion and Spin Changes during Type I X-Ray Bursts”, Astrophys. J., 564, 343–352, (2002). For a related online version see: A. Cumming, et al., “Hydrostatic Expansion and Spin Changes During Type I X-ray Bursts”, (August, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0108009. 2.10.2
Article
ADS
Google Scholar
Cutler, C., “Post-Newtonian effects on the modes of rotating stars”, Astrophys. J., 374, 248–254, (1991). 3.4.3
Article
ADS
MathSciNet
Google Scholar
Cutler, C., and Lindblom, L., “The effect of viscosity on neutron star oscillations”, Astrophys. J., 314, 234–241, (1987). 2.1
Article
ADS
Google Scholar
Cutler, C., and Lindblom, L., “Post-Newtonian frequencies for the pulsations of rapidly rotating neutron stars”, Astrophys. J., 385, 630–641, (1992). 3.4.3, 3.5.2
Article
ADS
Google Scholar
Cutler, C., and Thorne, K.S., “An Overview of Gravitational-Wave Sources”, in Proceedings of GR16, (2003). For a related online version see: C. Cutler, et al., “An Overview of Gravitational-Wave Sources”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/gr-qc/0204090. 3.5.5
Google Scholar
D’Amico, N., “The Bologna submillisecond pulsar survey”, in Kramer, M., Wex, N., and Wielebinski, N., eds., Pulsar Astronomy — 2000 and beyond, volume 202 of ASP Conference Series, 27, (Astronomical Society of the Pacific, San Francisco, 2000). 2.9.3
ADS
Google Scholar
Datta, B., “Recent developments in neutron star physics”, Fundam. Cosmic Phys., 12, 151–239, (1988). 2.7.1
ADS
Google Scholar
Datta, B., Hasan, S.S., Sahu, P.K., and Prasanna, A.R., “Radial modes of rotating neutron stars in the Chandrasekhar-Friedman formalism”, Int. J. Mod. Phys. D, 7, 49–59, (1998). 3.3.2
Article
ADS
Google Scholar
Datta, B., Thampan, A.V., and Bombaci, I., “Equilibrium sequences of rotating neutron stars for new microscopic equations of state”, Astron. Astrophys., 334, 943–952, (1998). For a related online version see: B. Datta, et al., “Equilibrium sequences of rotating neutron stars for new microscopic equations of state”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9801312. 2.6.2
ADS
Google Scholar
Detweiler, S.L., and Ipser, J.R., “A Variational Principle and a Stability Criterion for the Non-radial Modes of Pulsation of Stellar Models in General Relativity”, Astrophys. J., 185, 685–708, (1973). 3.4.1
Article
ADS
MathSciNet
Google Scholar
Detweiler, S.L., and Lindblom, L., “On the nonradial pulsations of general relativistic stellar models”, Astrophys. J., 292, 12–15, (1985). 3.4.1
Article
ADS
Google Scholar
Dey, M., Bombaci, I., Dey, J., Ray, S., and Samanta, B.C., “Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential”, Phys. Lett. B, 438, 123–128, (1998). For a related online version see: M. Dey, et al., “Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential”, (October, 1998), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9810065. 2.6.3, 2.9.8
Article
ADS
Google Scholar
Di Girolamo, T., and Vietri, M., “Post-Newtonian Treatment of Bar Mode Instability in Rigidly Rotating Equilibrium Configurations for Polytropic Stars”, Astrophys. J., 581, 519–549, (2002). For a related online version see: T. Di Girolamo, et al., “Post-Newtonian treatment of bar mode instability in rigidly rotating equilibrium configurations for neutron stars”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/astro-ph/0205398. 3.5.6
Article
ADS
Google Scholar
Dimmelmeier, H., General Relativistic Collapse of Rotating Stellar Cores in Axisymmetry, PhD Thesis, (Technische Universität München, München, Germany, 2001). 4.3.2
Google Scholar
Dimmelmeier, H., Font, J.A., and E., Müller, “Gravitational waves from relativistic rotational core collapse”, Astrophys. J., 560, L163–L166, (2001). For a related online version see: H. Dimmelmeier, et al., “Gravitational waves from relativistic rotational core collapse”, (March, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0103088. 4.3.2
Article
ADS
MATH
Google Scholar
Dimmelmeier, H., Font, J.A., and E., Müller, “Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917–935, (2002). For a related online version see: H. Dimmelmeier, et al., “Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0204288. 4.3.2
Article
ADS
Google Scholar
Dimmelmeier, H., Font, J.A., and E., Müller, “Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523–542, (2002). For a related online version see: H. Dimmelmeier, et al., “Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0204289. 4.3.2
Article
ADS
MATH
Google Scholar
Duez, M.D., Marronetti, P., Shapiro, S.L., and Baumgarte, T.W., “Hydrodynamic simulations in 3+1 general relativity”, Phys. Rev. D, 67, 024004–1–024004–22, (2003). For a related online version see: M.D. Duez, et al., “Hydrodynamic Simulations in 3+1 General Relativity”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/gr-qc/0209102. 4.1.1
Article
ADS
MathSciNet
Google Scholar
Edwards, R.T., van Strate, W., and Bailes, M., “A Search for Submillisecond Pulsars”, Astrophys. J., 560, 365–370, (2001). For a related online version see: R.T. Edwards, et al., “A Search for Submillisecond Pulsars”, (June, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0106353. 2.9.3
Article
ADS
Google Scholar
Eriguchi, Y., Hachisu, I., and Nomoto, K., “Structure of Rapidly Rotating Neutron Stars”, Mon. Not. R. Astron. Soc., 266, 179–185, (1994). 2.7.3, 2.7.8
Article
ADS
Google Scholar
Evans, C.R., A method for numerical relativity: Simulation of axisymmetric gravitational collapse and gravitational radiation generation, PhD Thesis, (Texas University, Austin, USA, 1984). 4.3.2
Google Scholar
Evans, C.R., “An Approach for Calculating Axisymmetric Gravitational Collapse”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, 3–39, (Cambrigde University Press, Cambridge, England, 1986). 4.3.2
Google Scholar
Farhi, E., and Jaffe, R.L., “Strange matter”, Phys. Rev. D, 30, 2379–2390, (1984). 2.6.3, 2.9.8
Article
ADS
Google Scholar
Finn, L.S., “Relativistic stellar pulsations in the Cowling approximation”, Mon. Not. R. Astron. Soc., 232, 259–275, (1988). 3.4.4
Article
ADS
MathSciNet
MATH
Google Scholar
Flanagan, E.E., “Astrophysical Sources of Gravitational Radiation and Prospects for their Detection”, in Dadhich, N., and Narlikar, J., eds., Gravitation and Relativity: At the turn of the Millennium. Proceedings of the GR-15 Conference, Pune, December 16–21, 1997, 177–197, (IUCAA, Pune, 1998). For a related online version see: E.E. Flanagan, “Sources of Gravitational Radiation and Prospects for their Detection”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9804024. 3.5.5
Google Scholar
Flowers, E., and Itoh, N., “Transport properties of dense matter”, Astrophys. J., 206, 218–242, (1976). 2.1, 3.5.4
Article
ADS
Google Scholar
Flowers, E., and Itoh, N., “Transport properties of dense matter. II”, Astrophys. J., 230, 847–858, (1979). 2.1
Article
ADS
Google Scholar
Font, J.A., “Numerical Hydrodynamics in General Relativity”, (2000), [Article in Online Journal Living Reviews in Relativity]: cited on 5 June 2002, http://www.livingreviews.org/Articles/Volume3/2000-2font. 4.1.1
Book
MATH
Google Scholar
Font, J.A., Dimmelmeier, H., Gupta, A., and Stergioulas, N., “Axisymmetric Modes of Rotating Relativistic Stars in the Cowling Approximation”, Mon. Not. R. Astron. Soc., 325, 1463–1470, (2001). For a related online version see: J.A. Font, et al., “Axisymmetric Modes of Rotating Relativistic Stars in the Cowling Approximation”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0204289. 3.3.2, 5, 4.2, 18
Article
ADS
Google Scholar
Font, J.A., Goodale, T., Iyer, S., Miller, M., Rezzolla, L., Seidel, E., Stergioulas, N., Suen, W.-M., and Tobias, M., “Three-dimensional general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars”, Phys. Rev. D, 65, 084024–1–084024–18, (2002). For a related online version see: J.A. Font, et al., “Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0110047. 3.2, 3.3.2, 4, 4.1.1, 4.2, 18
Article
ADS
MathSciNet
Google Scholar
Font, J.A., Stergioulas, N., and Kokkotas, K.D., “Nonlinear hydrodynamical evolution of rotating relativistic stars: Numerical methods and code tests”, Mon. Not. R. Astron. Soc., 313, 678–688, (2000). For a related online version see: J.A. Font, et al., “Nonlinear hydrodynamical evolution of rotating relativistic stars: Numerical methods and code tests”, (August, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/9908010. 3.3.2, 4, 4.1.1
Article
ADS
Google Scholar
Friedman, J.L., unpublished, quoted in Glendenning, N.K., ”PSR1987A: the case for strong quarks”, J. Phys. G., 15, L255–L260, (1989). 2.9.8
Article
Google Scholar
Friedman, J.L., “Ergosphere Instability”, Commun. Math. Phys., 63, 243–255, (1978). 2.2
Article
ADS
MathSciNet
MATH
Google Scholar
Friedman, J.L., “How fast can pulsars spin?”, in Ashby, N., Bartlett, D.F., and Wyssed, W., eds., General Relativity and Gravitation, 1989: Proceedings of the 12th International Conference on General Relativity and Gravitation, University of Colorado at Boulder, July 2–8, 1989, 21–39, (Cambridge University Press, Cambridge, 1990). 2.9.2
Chapter
Google Scholar
Friedman, J.L., “Upper Limit on the Rotation of Relativistic Stars”, in Fruchter, A.S., Tavani, M., and Backer, D.C., eds., Millisecond Pulsars. A Decade of Surprise, volume 72 of ASP Conference Series, 177–185, (Astronomical Society of the Pacific, San Francisco, California, 1995). 2.9.3
ADS
Google Scholar
Friedman, J.L., and Ipser, J.R., “On the maximum mass of a uniformly rotating neutron star”, Astrophys. J., 314, 594–597, (1987). 2.9.4
Article
ADS
Google Scholar
Friedman, J.L., and Ipser, J.R., “Rapidly rotating relativistic stars”, Philos. Trans. R. Soc. London, Ser. A, 340, 391–422, (1992). 2.1, 2.9.1
ADS
MATH
Google Scholar
Friedman, J.L., Ipser, J.R., and Parker, L., “Rapidly rotating neutron star models”, Astrophys. J., 304, 115–139, (1986). Erratum: Astrophys. J., 351, 705 (1990). 2.7.2
Article
ADS
Google Scholar
Friedman, J.L., Ipser, J.R., and Parker, L., “Implications of a halfmillisecond pulsar”, Phys. Rev. Lett., 62, 3015–3019, (1989). 2.7.2, 2.9.2
Article
ADS
Google Scholar
Friedman, J.L., Ipser, J.R., and Sorkin, R.D., “Turning-point method for axisymmetric stability of rotating relativistic stars”, Astrophys. J., 325, 722–724, (1988). 3.3.1
Article
ADS
Google Scholar
Friedman, J.L., and Lockitch, K.H., “Implications of the r-mode instability of rotating relativistic stars”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds., Proceedings of the 9th Marcel Grossmann Meeting, 163–181, (World Scientific, Singapore, 2002). 3.5.3
Chapter
Google Scholar
Friedman, J.L., and Morsink, S.M., “Axial Instability of Rotating Relativistic Stars”, Astrophys. J., 502, 714–720, (1998). For a related online version see: J.L. Friedman, et al., “Axial Instability of Rotating Relativistic Stars”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9706073. 3.5.1, 3.5.3
Article
ADS
Google Scholar
Friedman, J.L., and Schutz, B.F., “Secular instability of rotating Newtonian stars”, Astrophys. J., 222, 281–296, (1978). 3, 3.5.1, 3.5.2
Article
ADS
Google Scholar
Fryer, C.L., and Heger, A., “Core-Collapse Simulations of Rotating Stars”, Astrophys. J., 541, 1033–1050, (2000). For a related online version see: C.L. Fryer, et al., “Core-Collapse Simulations of Rotating Stars”, (July, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9907433. 2.9.3
Article
ADS
Google Scholar
Geroch, R., and Lindblom, L., “Causal Theories of Dissipative Relativistic Fluids”, Ann. Phys. (N. Y.), 207, 394–416, (1991). 2.9.4
Article
ADS
MathSciNet
MATH
Google Scholar
Giazotto, A., Bonazzola, S., and Gourgoulhon, E., “On gravitational waves emitted by an ensemble of rotating neutron stars”, Phys. Rev. D, 55, 2014–2023, (1997). For a related online version see: A. Giazotto, et al., “On gravitational waves emitted by an ensemble of rotating neutron stars”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9611188. 3.5.5
Article
ADS
Google Scholar
Glendenning, N.K., “Fast pulsar in SN 1987A: Candidate for strange-quark matter”, Phys. Rev. Lett., 63, 2629–2632, (1989). 2.9.8
Article
ADS
Google Scholar
Glendenning, N.K., “PSR 1987A: the case for strange-quark stars”, J. Phys. G, 15, L255–260, (1989). 2.9.8
Article
ADS
Google Scholar
Glendenning, N.K., “Limiting rotational period of neutron stars”, Phys. Rev. D, 46, 4161–4168, (1992). 2.9.4
Article
ADS
Google Scholar
Glendenning, N.K., Compact Stars, Nuclear Physics, Particle Physics, and General Relativity, (Springer-Verlag, New York, 1997). 2.6.2, 2.6.3
MATH
Google Scholar
Glendenning, N.K., and Weber, F., “Nuclear solid crust on rotating strange quarks stars”, Astrophys. J., 400, 647–658, (1992). 2.9.8
Article
ADS
Google Scholar
Gondek, D., Haensel, P., and Zdunik, J.L., “Radial pulsations and stability of protoneutron stars”, Astron. Astrophys., 325, 217–227, (1997). For a related online version see: D. Gondek, et al., “Radial pulsations and stability of protoneutron stars”, (May, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9705157. 2.9.7, 3.3.1
ADS
Google Scholar
Gondek-Rosińska, D., Bulik, T., Zdunik, J.L., Gourgoulhon, E., Ray, S., Dey, J., and Dey, M., “Rotating compact strange stars”, Astron. Astrophys., 363, 1005–1012, (2000). For a related online version see: D. Gondek-Rosińska, et al., “Rotating compact strange stars”, (July, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0007004. 2.6.3, 2.9.8
ADS
Google Scholar
Gondek-Rosińska, D., and E., Gourgoulhon, “Jacobi-like bar mode instability of relativistic rotating bodies”, Phys. Rev. D, 66, 044021–1–044021–11, (2002). For a related online version see: D. Gondek-Rosińska, et al., “Jacobi-like bar mode instability of relativistic rotating bodies”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/gr-qc/0205102. 2.7.5, 2.7.8, 3.5.6
Article
ADS
Google Scholar
Gondek-Rosińska, D., Gourgoulhon, E., and Haensel, P., “Rapidly Rotating Strange Quark Stars as Sources of Gravitational Waves”, preprint, submitted to Astron. Astrophys., (2003). 3.5.6
Google Scholar
Gondek-Rosińska, D., Stergioulas, N., Bulik, T., Kluźniak, W., and Gourgoulhon, E., “Lower Limits on the Maximum Orbital Frequency Around Rotating Strange Stars”, Astron. Astrophys., 380, 190–197, (2001). For a related online version see: D. Gondek-Rosińska, et al., “Lower Limits on the Maximum Orbital Frequency Around Rotating Strange Stars”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0110209. 2.9.8
Article
ADS
Google Scholar
Gourgoulhon, E., and Bonazzola, S., “A formulation of the virial theorem in general relativity”, Class. Quantum Grav., 11, 443–452, (1994). 2.7.4, 2.7.7
Article
ADS
MathSciNet
MATH
Google Scholar
Gourgoulhon, E., Haensel, P., Livine, R., Paluch, E., Bonazzola, S., and Marck, J.-A., “Fast rotation of strange stars”, Astron. Astrophys., 349, 851–862, (1999). For a related online version see: E. Gourgoulhon, et al., “Fast rotation of strange stars”, (July, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9907225. 2.7.5, 2.9.8, 3, 2.9.8
ADS
Google Scholar
Goussard, J.O., Haensel, P., and Zdunik, J.L., “Rapid Uniform Rotation of Protoneutron Stars”, Astron. Astrophys., 321, 822–834, (1997). For a related online version see: J.O. Goussard, et al., “Rapid Uniform Rotation of Protoneutron Stars”, (October, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9610265. 2.9.7, 3.3.1
ADS
Google Scholar
Goussard, J.O., Haensel, P., and Zdunik, J.L., “Rapid Differential Rotation of Protoneutron Stars and Constraints on Radio Pulsars Periods”, Astron. Astrophys., 330, 1005–1016, (1998). For a related online version see: J.O. Goussard, et al., “Rapid Differential Rotation of Protoneutron Stars and Constraints on Radio Pulsars Periods”, (November, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9711347. 2, 2.9.7
ADS
Google Scholar
Gressman, P., Lin, L-M., Suen, W-M., Stergioulas, N., and Friedman, J.L., “Nonlinear r-modes in neutron stars: Instability of an unstable mode”, Phys. Rev. D, 66, 041303–1–041303–5, (2002). For a related online version see: P. Gressman, et al., “Nonlinear r-modes in Neutron Stars: Instability of an unstable mode”, (March, 2003), [Online Los Alamos Archive Preprint]: cited on 3 April 2003, http://www.arxiv.org/abs/gr-qc/0301014. 3.5.3
Article
ADS
Google Scholar
Gupta, A., Mishra, A., Mishra, H., and Prasanna, A.R., “Rotating Compact Objects with Magnetic Fields”, Class. Quantum Grav., 15, 3131–3145, (1998). For a related online version see: A. Gupta, et al., “Rotating Compact Objects with Magnetic Fields”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9805146. 2.9.6
Article
ADS
MathSciNet
MATH
Google Scholar
Haensel, P., “Equation of State of Dense Matter and Maximum Mass of Neutron Stars”, in Hameury, J.-M., and Motch, C., eds., Final Stages of Stellar Evolution, EAS Publication Series, (EDP Sciences, Les Ulis, France, 2003). For a related online version see: P. Haensel, “Equation of state of dense matter and maximum mass of neutron stars”, (January, 2003), [Online Los Alamos Archive Preprint]: cited on 10 January 2003, http://www.arxiv.org/abs/astro-ph/0301073.
Google Scholar
Haensel, P., Lasota, J.-P., and Zdunik, J.L., “On the minimum period of uniformly rotating neutron stars”, Astron. Astrophys., 344, 151–153, (1999). For a related online version see: P. Haensel, et al., “On the minimum period of uniformly rotating neutron stars”, (January, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9901118. 2.9.4
ADS
Google Scholar
Haensel, P., Levenfish, K.P., and Yakovlev, D.G., “Bulk viscosity in super-fluid neutron star cores. III. Effects of ∑- hyperons”, Astron. Astrophys., 381, 1080–1089, (2002). For a related online version see: P. Haensel, et al., “Bulk viscosity in superfluid neutron star cores. III. Effects of ∑- hyperons”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0110575. 3.5.3
Article
ADS
Google Scholar
Haensel, P., Salgado, M., and Bonazzola, S., “Equation of state of dense matter and maximum rotation frequency of neutron stars”, Astron. Astrophys., 296, 746–751, (1995). 2.9.2
ADS
Google Scholar
Haensel, P., and Zdunik, J.L., “A submillisecond pulsar and the equation of state of dense matter”, Nature, 340, 617–619, (1989). 2.9.2
Article
ADS
Google Scholar
Hartle, J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Astrophys. J., 150, 1005–1029, (1967). 2.2, 2.7.1
Article
ADS
Google Scholar
Hartle, J.B., “Bounds on the mass and moment of inertia of non-rotating neutron stars”, Phys. Rep., 46, 201–247, (1978). 2.9.4
Article
ADS
Google Scholar
Hartle, J.B., and Friedman, J.L., “Slowly rotating relativistic stars. VIII. Frequencies of the quasi-radial modes of an n=3/2 polytrope”, Astrophys. J., 196, 653–660, (1975). 3.3.2
Article
ADS
Google Scholar
Hartle, J.B., and Sabbadini, A.G., “The equation of state and bounds on the mass of nonrotating neutron stars”, Astrophys. J., 213, 831–835, (1977). 2.9.4
Article
ADS
Google Scholar
Hartle, J.B., and Sharp, D.H., “Variational Principle for the Equilibrium of a Relativistic, Rotating Star”, Astrophys. J., 147, 317–333, (1967). 2.5
Article
ADS
Google Scholar
Hartle, J.B., and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Astrophys. J., 153, 807–834, (1968). 2.7.1
Article
ADS
Google Scholar
Hartle, J.B., and Thorne, K.S., “Slowly Rotating Relativistic Stars. III. Static Criterion for Stability”, Astrophys. J., 158, 719–726, (1969). 2.8
Article
ADS
Google Scholar
Hashimoto, M., Oyamatsu, K., and Eriguchi, Y., “Upper limit of the angular velocity of neutron stars”, Astrophys. J., 436, 257–261, (1994). 2.9.7
Article
ADS
Google Scholar
Heger, A., Langer, N., and Woosley, S.E., “Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure”, Astrophys. J., 528, 368–396, (2000). For a related online version see: A. Heger, et al., “Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure”, (May, 1999), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/9905058. 2.9.3
Article
ADS
Google Scholar
Heger, A., Woosley, S.E., Langer, N., and Spruit, H.C., “Presupernova Evolution of Rotating Massive Stars and the Rotation Rate of Pulsars”, in Maeder, A., and Eenens, P., eds., Stellar Rotation, Proceedings of the IAU Symposium 215 on Stellar Rotation, (2003). For a related online version see: A. Heger, et al., “Presupernova Evolution of Rotating Massive Stars and the Rotation Rate of Pulsars”, (January, 2003), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/astro-ph/0301374. 2.9.3
Google Scholar
Hegyi, D.J., “The upper mass limit for neutron stars including differential rotation”, Astrophys. J., 217, 244–247, (1977). 2.1
Article
ADS
Google Scholar
Heyl, J., “Low-Mass X-Ray Binaries May Be Important Laser Interferometer Gravitational-Wave Observatory Sources After All”, Astrophys. J., 574, L57–L60, (2002). For a related online version see: J. Heyl, “LMXBs may be important LIGO sources after all”, (June, 2002), [Online Los Alamos Archive Preprint]: cited on 14 June 2002, http://www.arxiv.org/abs/astro-ph/0206174. 3.5.3
Article
ADS
Google Scholar
Houser, J.L., Centrella, J.M., and Smith, S.C., “Gravitational radiation from nonaxisymmetric instability in a rotating star”, Phys. Rev. Lett., 72, 1314–1317, (1994). For a related online version see: J.L. Houser, et al., “Gravitational radiation from nonaxisymmetric instability in a rotating star”, (September, 1994), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9409057. 3.5.1
Article
ADS
Google Scholar
Imamura, J.N., Friedman, J.L., and Durisen, R.H., “Secular stability limits for rotating polytropic stars”, Astrophys. J., 294, 474–478, (1985). 3, 3.5.2
Article
ADS
Google Scholar
Ipser, J.R., Kislinger, M.B., and Morley, P.D., unpublished. 2.6.3
Ipser, J.R., and Lindblom, L., “The oscillations of rapidly rotating Newtonian stellar models”, Astrophys. J., 355, 226–240, (1990). 3, 3.5.2
Article
ADS
Google Scholar
Ipser, J.R., and Lindblom, L., “On the adiabatic pulsations of accretion disks and rotating stars”, Astrophys. J., 379, 285–289, (1991). 3, 3.5.1, 3.5.4
Article
ADS
Google Scholar
Ipser, J.R., and Lindblom, L., “The oscillations of rapidly rotating Newtonian stellar models. II — Dissipative effects”, Astrophys. J., 373, 213–221, (1991). 3, 3.5.1, 3.5.4
Article
ADS
Google Scholar
Ipser, J.R., and Lindblom, L., “On the pulsations of relativistic accretion disks and rotating stars — The Cowling approximation”, Astrophys. J., 389, 392–399, (1992). 3.5.1, 3.5.2
Article
ADS
Google Scholar
Ipser, J.R., and Managan, R.A., “An Eulerian variational principle and a criterion for the occurrence of nonaxisymmetric neutral modes along rotating axisymmetric sequences”, Astrophys. J., 292, 517–521, (1985). 3, 3.5.2
Article
ADS
MathSciNet
Google Scholar
Ipser, J.R., and Price, R.H., “Nonradial pulsations of stellar models in general relativity”, Phys. Rev. D, 43, 1768–1773, (1991). 3.4.1
Article
ADS
MathSciNet
Google Scholar
James, R.A., “The Structure and Stability of Rotating Gas Masses”, Astrophys. J., 140, 552–582, (1964). 3.5.2, 3.5.6
Article
ADS
MathSciNet
Google Scholar
Jones, D.I., “Gravitational waves from rotating neutron stars”, Class. Quantum Grav., 19, 1255–1266, (2002). For a related online version see: D.I. Jones, “Gravitational waves from rotating neutron stars”, (November, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0111007. 2.9.1
Article
ADS
MATH
Google Scholar
Jones, P.B., “Comment on ‘Gravitational radiation instability in hot young neutron stars’”, Phys. Rev. Lett., 86, 1384–1384, (2001). 3.5.3
Article
ADS
Google Scholar
Kaaret, P., Ford, E.C., and Chen, K., “Strong-Field General Relativity and Quasi-periodic Oscillations in X-Ray Binaries”, Astrophys. J., 480, L27–L29, (1997). For a related online version see: P. Kaaret, et al., “Strong-Field General Relativity and Quasi-periodic Oscillations in X-Ray Binaries”, (January, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9701101. 2.9.3, 2.9.8
Article
ADS
Google Scholar
Klis, M. van der, “Millisecond Oscillations in X-Ray Binaries”, Ann. Rev. Astron. Astrophys., 38, 717–760, (2000). For a related online version see: M. van der Klis, “Millisecond Oscillations in X-Ray Binaries”, (January, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0001167. 2.10.1, 2.10.2
Article
ADS
Google Scholar
Kluźniak, W., and Abramowicz, M.A., “Parametric epicyclic resonance in black hole disks: QPOs in micro-quasars”, (March, 2002), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0203314. 2.10.1
Google Scholar
Kluźniak, W., Bulik, T., and Gondek-Rosińska, D., “Quark stars in Low-Mass X-ray Binaries: for and against”, in Exploring the Gamma-Ray Universe, Proceedings of the 4th Integral Workshop, ESA SP-459, 301–304, (2001). For a related online version see: W. Kluźniak, et al., “Quark stars in Low-Mass X-ray Binaries: for and against”, (November, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0011517. 2.10.1
Google Scholar
Kluźniak, W., Michelson, P., and Wagoner, R.V., “Determining the properties of accretion-gap neutron stars”, Astrophys. J., 358, 538–544, (1990). 2.10.1
Article
ADS
Google Scholar
Kluźniak, W., and Wilson, J.R., “Hard X-ray Spectra from Gap Accretion onto Neutron Stars”, Astrophys. J., 372, L87–L90, (1991). 2.10.2
Article
ADS
Google Scholar
Kojima, Y., “Equations governing the nonradial oscillations of a slowly rotating relativistic star”, Phys. Rev. D, 46, 4289–4303, (1992). 3.4.2
Article
ADS
MathSciNet
Google Scholar
Kojima, Y., “Coupled Pulsations between Polar and Axial Modes in a Slowly Rotating Relativistic Star”, Prog. Theor. Phys., 90, 977–990, (1993). 3.4.2
Article
ADS
Google Scholar
Kojima, Y., “Normal modes of relativistic stars in slow rotation limit”, Astrophys. J., 414, 247–253, (1993). 3.4.2
Article
ADS
Google Scholar
Kojima, Y., “Quasi-toroidal oscillations in rotating relativistic stars”, Mon. Not. R. Astron. Soc., 293, 49–52, (1998). For a related online version see: Y. Kojima, “Quasi-toroidal oscillations in rotating relativistic stars”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9709003. 3.5.3
Article
ADS
Google Scholar
Kokkotas, K., and Schmidt, B., “Quasi-normal Modes of Black Holes and Stars”, (1999), [Article in Online Journal Living Reviews in Relativity]: cited on 5 June 2002, http://www.livingreviews.org/Articles/Volume2/1999-2kokkotas. 3.1
Book
MATH
Google Scholar
Kokkotas, K.D., “Pulsating relativistic stars”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation: Proceedings of the Les Houches School of Physics, 26 September–6 October, 1995, Cambridge Contemporary Astrophysics, 89–102, (Cambridge University Press, Cambridge, 1997). For a related online version see: K.D. Kokkotas, “Pulsating Relativistic Stars”, (March, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1997, http://www.arxiv.org/abs/gr-qc/9603024. 3.1
Google Scholar
Kokkotas, K.D., “Stellar Pulsations and Gravitational Waves”, in Krolak, A., ed., Mathematics of Gravitation, Gravitational Wave Detection, volume 41(II) of Banach Center Publications, 31–41, (Banach Center Publications, Warsaw, 1997). 3.1
MathSciNet
MATH
Google Scholar
Kokkotas, K.D., and Ruoff, J., “Instabilities of Relativistic Stars”, in 2001: A relativistic spacetime Odyssey, 25th Johns Hopkins Workshop, (2002). For a related online version see: K.D. Kokkotas, et al., “Instabilities of Relativistic Stars”, (December, 2001), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/gr-qc/0212105. Firenze 2001. 3.4.2, 3.5.3
Google Scholar
Kokkotas, K.D., and Schutz, B.F., “W-modes: A new Family of Normal Modes for Pulsating Relativistic Stars”, Mon. Not. R. Astron. Soc., 225, 119–128, (1992). 3.4.1
Article
ADS
Google Scholar
Kokkotas, K.D., and Stergioulas, N., “Analytic Desctription of the r-mode Instability in Uniform Density Stars”, Astron. Astrophys., 341, 110–116, (1999). For a related online version see: K.D. Kokkotas, et al., “Analytic Desctription of the r-mode Instability in Uniform Density Stars”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9805297. 3.5.3
ADS
Google Scholar
Kokkotas, K.D., Ruoff J., and Andersson, N., “The w-mode instability of ultracompact relativistic stars”, (December, 2002), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/astro-qc/0212429. 3.5.3
Google Scholar
Komatsu, H., Eriguchi, Y., and Hachisu, I., “Rapidly rotating general relativistic stars. I — Numerical method and its application to uniformly rotating polytropes”, Mon. Not. R. Astron. Soc., 237, 355–379, (1989). 2.5, 2.7, 2.7.3
Article
ADS
MATH
Google Scholar
Komatsu, H., Eriguchi, Y., and Hachisu, I., “Rapidly rotating general relativistic stars. II — Differentially rotating polytropes”, Mon. Not. R. Astron. Soc., 239, 153–171, (1989). 2.5, 2.7, 2.7.3
Article
ADS
MATH
Google Scholar
Koranda, S., Stergioulas, N., and Friedman, J.L., “Upper limit Set by Causality on the Rotation and Mass of Uniformly Rotating Relativistic Stars”, Astrophys. J., 488, 799–806, (1997). For a related online version see: S. Koranda, et al., “Upper limit Set by Causality on the Rotation and Mass of Uniformly Rotating Relativistic Stars”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9608179. 2.9.4, 2.9.4, 2.9.4
Article
ADS
Google Scholar
Kulkarni, S.R., “The First Decade of Millisecond Pulsars: An Overview”, in Fruchter, A.S., Tavani, M., and Backer, D.C., eds., Millisecond Pulsars. A Decade of Surprise, volume 72 of ASP Conference Series, 79–101, (Astronomical Society of the Pacific, San Francisco, California, 1995). 2.6.2, 2.9.3
ADS
Google Scholar
Laarakkers, W.G., and Poisson, E., “Quadrupole moments of rotating neutron stars”, Astrophys. J., 512, 282–287, (1999). For a related online version see: W.G. Laarakkers, et al., “Quadrupole moments of rotating neutron stars”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9709033. 2.9.1
Article
ADS
Google Scholar
Lai, D., Rasio, F.A., and Shapiro, S.L., “Ellipsoidal figures of equilibrium — Compressible models”, Astrophys. J. Suppl. Ser., 88, 205–252, (1993). 3.5.5
Article
ADS
Google Scholar
Lai, D., Rasio, F.A., and Shapiro, S.L., “Hydrodynamics of Rotating Stars and Close Binary Interactions: Compressible Ellipsoid Models”, Astrophys. J., 437, 742–769, (1994). For a related online version see: D. Lai, et al., “Hydrodynamics of Rotating Stars and Close Binary Interactions: Compressible Ellipsoid Models”, (April, 1994), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9404031. 3.5.5
Article
ADS
Google Scholar
Lai, D., and Shapiro, S.L., “Gravitational radiation from rapidly rotating nascent neutron stars”, Astrophys. J., 442, 259–272, (1995). For a related online version see: D. Lai, et al., “Gravitational radiation from rapidly rotating nascent neutron stars”, (August, 1994), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9408053. 3.5.4, 3.5.5
Article
ADS
Google Scholar
Lamb, F.K., Miller, M.C., and Psaltis, D., “The Origin of Kilohertz QPOs and Implications for Neutron Stars”, in Shibazaki, N., Kawai, N., Shibata, S., and Kifune, T., eds., Neutron Stars and Pulsars: Thirty Years after the Discovery, number 24 in Frontiers science series, 89, (Universal Academy Press, Tokyo, Japan, 1998). Proceedings of the International Conference on Neutron Stars and Pulsars held on November 17–20, 1997, at Tachikawa Hall, Rikkyo University, Tokyo, Japan. 2.10.1
Google Scholar
Lasota, J.-P., Haensel, P., and Abramowicz, M.A., “Fast Rotation of Neutron Stars”, Astrophys. J., 456, 300–304, (1996). 2.9.2
Article
ADS
Google Scholar
Lattimer, J.M., Prackash, M., Pethick, C.J., and Haensel, P., “Direct URCA process in neutron stars”, Phys. Rev. Lett., 66, 2701–2704, (1991). 3.5.4
Article
ADS
Google Scholar
Lattimer, J.M., and Swesty, F.D., “A Generalized Equation of State for Hot, Dense Matter”, Nucl. Phys. A, 535, 331–376, (1991). 2.9.7
Article
ADS
Google Scholar
Lattimer, L.M., Prakash, M., Masak, D., and Yahil, A., “Rapidly rotating pulsars and the equation of state”, Astrophys. J., 355, 241–254, (1990). 2.7.2, 2.9.8, 2.9.8
Article
ADS
Google Scholar
Leins, M., Nollert, H.-P., and Soffel, M.H., “Nonradial Oscillations of Neutron Stars: A New Branch of Strongly Damped Normal Modes”, Phys. Rev. D, 48, 3467–3472, (1993). 3.4.1
Article
ADS
Google Scholar
Lewin, W.H.G., van Paradijs, J., and Taam, R.E., “X-ray bursts”, in Lewin, W.H.G., van Paradijs, J., and van den Heuvel, E.P.J., eds., X-ray binaries, volume 26 of Cambridge Astrophysics Series, 175–232, (Cambridge University. Press, Cambridge, 1995
ADS
Google Scholar
Lindblom, L., “Critical angular velocities of rotating neutron stars”, Astrophys. J., 438, 265–268, (1995). 3.4.3, 3.5.2, 3.5.4
Article
ADS
Google Scholar
Lindblom, L., “The Relaxation Effect in Dissipative Relativistic Fluid Theories”, Ann. Phys. (N. Y.), 247, 1–18, (1996). For a related online version see: L. Lindblom, “The Relaxation Effect in Dissipative Relativistic Fluid Theories”, (August, 1995), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9508058. 2.6.3
Article
ADS
MathSciNet
MATH
Google Scholar
Lindblom, L., “Neutron Star Pulsations and Instabilities”, in Ferrari, V., Miller, J.C., and Rezzolla, L., eds., Gravitational Waves: A Challenge to Theoretical Astrophysics, volume 3 of ICTP Lecture Notes Series, 257–275, (ICTP, Trieste, Italy, 2001). For a related online version see: L. Lindblom, “Neutron Star Pulsations and Instabilities”, (January, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0101136. 3.5.3
MATH
Google Scholar
Lindblom, L., and Detweiler, S.L., “The quadrupole oscillations of neutron stars”, Astrophys. J. Suppl. Ser., 53, 73–92, (1983). 3.4.1
Article
ADS
Google Scholar
Lindblom, L., and Mendell, G., “The Oscillations of Superfluid Neutron Stars”, Astrophys. J., 421, 689–704, (1994). 3.2
Article
ADS
Google Scholar
Lindblom, L., and Mendell, G., “Does gravitational radiation limit the angular velocities of superfluid neutron stars?”, Astrophys. J., 444, 804–809, (1995). 3.5.1, 3.5.4
Article
ADS
Google Scholar
Lindblom, L., and Mendell, G., “R-modes in Superfluid Neutron Stars”, Phys. Rev. D, 61, 104003–1–104003–15, (2000). For a related online version see: L. Lindblom, et al., “R-modes in Superfluid Neutron Stars”, (September, 1999), [Online Los Alamos Archive Preprint]: cited on 5 June 2002, http://www.arxiv.org/abs/gr-qc/9909084. 3.5.4
Article
ADS
Google Scholar
Lindblom, L., Mendell, G., and Ipser, J.R., “Relativistic stellar pulsations with near-zone boundary conditions”, Phys. Rev. D, 56, 2118–2126, (1997). For a related online version see: L. Lindblom, et al., “Relativistic stellar pulsations with near-zone boundary conditions”, (April, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9704046. 3.4.1
Article
ADS
Google Scholar
Lindblom, L., and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”, Phys. Rev. D, 65, 063006–1–063006–15, (2002). For a related online version see: L. Lindblom, et al., “Effect of hyperon bulk viscosity on neutron-star r-modes”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0110558. 3.5.3, 3.5.3
Article
ADS
Google Scholar
Lindblom, L., Owen, B.J., and Morsink, S.M., “Gravitational Radiation Instability in Hot Young Neutron Stars”, Phys. Rev. Lett., 80, 4843–4846, (1998). For a related online version see: L. Lindblom, et al., “Gravitational Radiation Instability in Hot Young Neutron Stars”, (March, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9803053. 3.5.3
Article
ADS
Google Scholar
Lindblom, L., and Splinter, R.J., “The accuracy of the relativistic Cowling approximation”, Astrophys. J., 348, 198–202, (1990). 3.4.4
Article
ADS
Google Scholar
Lindblom, L., Tohline, J.E., and Vallisneri, M., “Non-linear evolution of the r-modes in neutron stars”, Phys. Rev. Lett., 86, 1152–1155, (2001). For a related online version see: L. Lindblom, et al., “Non-linear evolution of the r-modes in neutron stars”, (October, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/. 3.5.3, 3.5.3
Article
ADS
Google Scholar
Lindblom, L., Tohline, J.E., and Vallisneri, M., “Numerical evolutions of nonlinear r-modes in neutron stars”, Phys. Rev. D, 65, 084039, (2002). For a related online version see: L. Lindblom, et al., “Numerical evolutions of nonlinear r-modes in neutron stars”, (September, 2001), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0109352. 3.5.3
Article
ADS
Google Scholar
Liu, Y.T., and Lindblom, L., “Models of rapidly rotating neutron stars: Remnants of accretion induced collapse”, Mon. Not. R. Astron. Soc., 324, 1063–1073, (2001). For a related online version see: Y.T. Liu, et al., “Models of rapidly rotating neutron stars: Remnants of accretion induced collapse”, (December, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0012198. 2.9.3
Article
ADS
Google Scholar
Livio, M., and Pringle, J.E., “The Rotation Rates of White Dwarfs and Pulsars”, Astrophys. J., 505, 339–343, (1998). 2.9.3
Article
ADS
Google Scholar
Lockitch, K.H., Andersson, N., and Friedman, J.L., “Rotational modes of relativistic stars: Analytic results”, Phys. Rev. D, 63, 024019–1–024019–26, (2001). For a related online version see: K.H. Lockitch, et al., “The rotational modes of relativistic stars: Analytic results”, (August, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0008019. 3.4.2
Article
ADS
Google Scholar
Lyford, N.D., Baumgarte, T.W., and Shapiro, S.L., “Effects of Differential Rotation on the Maximum Mass of Neutron Stars”, Astrophys. J., 583, 410–415, (2003). For a related online version see: N.D. Lyford, et al., “Effects of Differential Rotation on the Maximum Mass of Neutron Stars”, (October, 2002), [Online Los Alamos Archive Preprint]: cited on 7 February 2003, http://www.arxiv.org/abs/gr-qc/0210012. 2.9.5
Article
ADS
Google Scholar
Lynden-Bell, D., and Ostriker, J.P., “On the stability of differentially rotating bodies”, Mon. Not. R. Astron. Soc., 136, 293–310, (1967). 3
Article
ADS
MATH
Google Scholar
Maeda, K., Sasaki, M., Nakamura, T., and Miyama, S., “A New Formalism of the Einstein Equations for Relativistic Rotating Systems”, Prog. Theor. Phys., 63, 719–721, (1980). 4.3.1
Article
ADS
Google Scholar
Managan, R.A., “On the secular instability of axisymmetric rotating stars to gravitational radiation reaction”, Astrophys. J., 294, 463–473, (1985). 3, 3.5.2
Article
ADS
MathSciNet
Google Scholar
Manko, V.S., Martin, J., Ruiz, E., Sibgatullin, N.R., and Zaripov, M.N., “Metric of a rotating, charged, magnetized, deformed mass”, Phys. Rev. D, 49, 5144–5149, (1994). 2.8
Article
ADS
MathSciNet
Google Scholar
Manko, V.S., Mielke, E.W., and Sanabria-Gómez, J.D., “Exact solution for the exterior field of a rotating neutron star”, Phys. Rev. D, 61, 081501–1–081501–5, (2000). For a related online version see: V.S. Manko, et al., “Exact solution for the exterior field of a rotating neutron star”, (January, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/gr-qc/0001081. 2.8
Article
ADS
Google Scholar
Manko, V.S., Sanabria-Gómez, J.D., and Manko, O.V., “Nine-parameter electrovac metric involving rational functions”, Phys. Rev. D, 62, 044048–1–044048–10, (2000). 2.8
Article
ADS
MathSciNet
Google Scholar
Marković, D., “Bound near-equatorial orbits around neutron stars”, (September, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0009450. 2.10.1
Marković, D., “Eccentric orbits and QPOs in neutron star X-ray binaries”, (September, 2000), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/0009169. 2.10.1
Marshall, F.E., Gotthelf, E.V., Zhang, W., Middleditch, J., and Wang, Q.D., “Discovery of an ultra-fast pulsar in the supernova remnant N157B”, Astrophys. J., 499, L179–L182, (1998). For a related online version see: F.E. Marshall, et al., “Discovery of an ultra-fast pulsar in the supernova remnant N157B”, (March, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9803214. 3.5.3, 3.5.5
Article
ADS
Google Scholar
McDermott, P.N., Van Horn, H.M., and Hansen, C.J., “Nonradial Oscillations of Neutron Stars”, Astrophys. J., 325, 725–748, (1988). 3.1
Article
ADS
Google Scholar
McDermott, P.N., Van Horn, H.M., and Scholl, J.F., “Nonradial g-mode oscillations of warm neutron stars”, Astrophys. J., 268, 837–848, (1983). 3.4.4
Article
ADS
Google Scholar
Mendell, G., “Magnetohydrodynamics in Superconducting-Superfluid Neutron Stars”, Mon. Not. R. Astron. Soc., 296, 903–912, (1998). For a related online version see: G. Mendell, “Magnetohydrodynamics in Superconducting-Superfluid Neutron Stars”, (February, 1997), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/astro-ph/9702032. 2.1
Article
ADS
Google Scholar
Migdal, Z., Zh. Eskp. Teor. Fiz., 61, 2209, (1971). 2.6.2
Google Scholar
Miller, M.C., Lamb, F.K., and G.B., Cook, “Effects of Rapid Stellar Rotation on Equation-of-State Constraints Derived from Quasi-periodic Brightness Oscillations”, Astrophys. J., 509, 793–801, (1998). For a related online version see: M.C. Miller, et al., “Effects of Rapid Stellar Rotation on Equation-of-State Constraints Derived from Quasi-periodic Brightness Oscillations”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9805007. 2.10.1
Article
ADS
Google Scholar
Morsink, S., Stergioulas, N., and Blattning, S., “Quasi-normal Modes of Rotating Relativistic Stars — Neutral Modes for Realistic Equations of State”, Astrophys. J., 510, 854–861, (1999). For a related online version see: S. Morsink, et al., “Quasi-normal Modes of Rotating Relativistic Stars — Neutral Modes for Realistic Equations of State”, (June, 1998), [Online Los Alamos Archive Preprint]: cited on 2 May 1998, http://www.arxiv.org/abs/gr-qc/9806008. 7, 3.5.2
Article
ADS
Google Scholar
Morsink, S.M., and Stella, L.M., “Relativistic precession around rotating neutron stars: Effects due to frame-dragging and stellar oblateness”, Astrophys. J., 513, 827–844, (1999). For a related online version see: S.M. Morsink, et al., “Relativistic precession around rotating neutron stars: Effects due to frame-dragging and stellar oblateness”, (August, 1998), [Online Los Alamos Archive Preprint]: cited on 23 April 2002, http://www.arxiv.org/abs/astro-ph/9808227. 2.10.1
Article
ADS
Google Scholar
Nakamura, T., “General Relativistic Collapse of Axially Symmetric Stars”, Prog. Theor. Phys., 65, 1876–1890, (1981). 4.3.1
Article
ADS
Google Scholar
Nakamura, T., “General Relativistic Collapse of Accreting Neutron Stars with Rotation”, Prog. Theor. Phys., 70, 1144–1147, (1983). 4.3.1
Article
ADS
Google Scholar
Nakamura, T., Oohara, K., and Kojima, Y., “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1–12, (1987). 4
Article
ADS
MathSciNet
Google Scholar
Neugebauer, G., and Herold, H., “Gravitational Fields of Rapidly Rotating Neutron Stars: Theoretical Foundation”, in Ehlers, J., and Schäfer, G., eds., Relativistic Gravity Research: Proceedings of the 81 WE-Heraeus-Seminar Held at the Physikzentrum Bad Honnef, Germany, 2–6 September 1991, volume 410 of Lecture Notes in Physics, 305–318, (Springer, Berlin, 1992). 2.7