Abbott, L.F., “The background field method beyond one loop”, Nucl. Phys. B, 185, 189–203, (1981). 1, 4
Article
ADS
Google Scholar
Aharony, O., Gubser, S.S., Maldacena, J., Oogurl, H., and Oz, Y., “Large N Field Theories, String Theory and Gravity”, Phys. Rep., 323, 183–386, (2000). For a related online version see: O. Aharony, et al., “Large N Field Theories, String Theory and Gravity”, (May, 1999), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9905111. 1
Article
ADS
MathSciNet
MATH
Google Scholar
Antonladis, I., Bachas, C.P., and Kounnas, C., “Four-dimensional superstrings”, Nucl. Phys. B, 289, 87–108, (1987). 3.1, 3.2
Article
ADS
MathSciNet
Google Scholar
Bardeen, W.A., “Self-Dual Yang Mills Theory, Integrability and Multiparton Amplitudes”, Prog. Theor. Phys. Suppl., 123, 1–8, (1996). 1, 6.2
Article
ADS
Google Scholar
Batalin, I.A., and Vilkovisky, G.A., “Relativistic S-matrix of dynamical systems with boson and fermion constraints”, Phys. Lett. B, 69, 309–312, (1977). 5
Article
ADS
Google Scholar
Bel, L., “Sur la radiation gravitationelle”, Comptes Rendus Acad. Sci., 247, 1094–1096, (1958). and Ibid. 248, 1297 (1959). 7.3
MATH
Google Scholar
Berends, F.A., and Gastmans, R., “On the high-energy behavior in quantum gravity”, Nucl. Phys. B, 88, 99–108, (1975). 3.3
Article
ADS
Google Scholar
Berends, F.A., and Giele, W., “The six gluon process as an example of Weyl-Van Der Waerden spinor calculus”, Nucl. Phys. B, 294, 700–732, (1987). 3.2
Article
ADS
Google Scholar
Berends, F.A., and Giele, W.T., “Recursive calculations for processes with n gluons”, Nucl. Phys. B, 306, 759–808, (1988). 3.3
Article
ADS
Google Scholar
Berends, F.A., Giele, WT., and Kuijf, H., “On relations between multigluon and multigraviton scattering”, Phys. Lett. B, 211, 91–94, (1988). 1, 3.3, 3.4, 3.4, 6.2
Article
ADS
Google Scholar
Bern, Z., Chalmers, G., Dixon, L.J., and Kosower, D.A., “One loop N gluon amplitudes with maximal helicity violation via collinear limits”, Phys. Rev. Lett., 72, 2134–2137, (1994). For a related online version see: Z. Bern, et al., “One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits”, (December, 1993), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9312333. 1
Article
ADS
Google Scholar
Bern, Z., De Freitas, A., and Dixon, L., “Two-loop helicity amplitudes for gluon gluon scattering in QCD and supersymmetric Yang-Mills theory”, J. High Energy Phys., 0203, 018, (2002). For a related online version see: Z. Bern, et al., “Two-Loop Helicity Amplitudes for Gluon-Gluon Scattering in QCD and Supersymmetric Yang Mills Theory”, (January, 2002), [Online Los Alamos Preprint]: cited on 15 Aprilil 2002, http://xxx.lanl.gov/abs/hep-ph/0201161. 1,5,5
Article
ADS
MathSciNet
Google Scholar
Bern, Z., De Freitas, A., Dixon, L., and Wong, H.L., “Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts”, (February, 2002), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/0202271. 5
Bern, Z., De Freitas, A., and Wong, H.L., “Coupling Gravitons to Matter”, Phys. Rev. Lett., 84, 3531–3534, (2000). For a related online version see: Z. Bern, et al., “On the Coupling of Gravitons to Matter”, (December, 1999), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9912033. 1, 3.2, 3.3, 3.3, 3.3, 4
Article
ADS
Google Scholar
Bern, Z., Dixon, L., Dunbar, D.C., and Kosower, D.A., “One-loop n-point gauge theory amplitudes, unitarity and collinear limits”, Nucl. Phys. B, 425, 217–260, (1994). For a related online version see: Z. Bern, et al., “One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits”, (March, 1994), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9403226. 1, 5, 5, 5, 8
Article
ADS
MathSciNet
MATH
Google Scholar
Bern, Z., Dixon, L., Dunbar, D.C., and Kosower, D.A., “Fusing gauge theory tree amplitudes into loop amplitudes”, Nucl. Phys. B, 435, 59–101, (1995). For a related online version see: Z. Bern, et al., “Fusing Gauge Theory Tree Amplitudes Into Loop Amplitudes”, (September, 1994), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9409265. 1, 5, 5, 5, 8
Article
ADS
Google Scholar
Bern, Z., Dixon, L.J., Dunbar, D., Julia, B., Perelstein, M., Rozowsky, J., Seminara, D., and Trigiante, M., “Counterterms in Supergravity”, in Proceedings of 4th Annual European TMR Conference on Integra bility, Nonperturbative Effects and Symmetry in Quantum Field Theory in Paris, France, 7–13 September 2000, (2000). For a related online version see: Z. Bern, et al., “Counterterms in Supergravity”, (December, 2000), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/0012230. 1,7.3
Google Scholar
Bern, Z., Dixon, L.J., Dunbar, D.C., and Kosower, D.A., “One-loop self-dual and N=4 super Yang Mills”, Phys. Lett. B, 394, 105–115, (1997). For a related online version see: Z. Bern, et al., “One-Loop Self-Dual and N=4 Super Yang-Mills”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9611127. 6.2
Article
ADS
MathSciNet
Google Scholar
Bern, Z., Dixon, L.J., Dunbar, D.C., Perelstein, M., and Rozowsky, J.S., “On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences”, Nucl. Phys. B, 530, 401–456, (1998). For a related online version see: Z. Bern, et al., “On the Relationship between Yang-Mills Theory and Gravity and its Implication for Ultraviolet Divergences”, (February, 1998), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9802162. 1, 1, 7.2, 7.2, 7.3, 8
Article
ADS
Google Scholar
Bern, Z., Dixon, L.J., and Kosower, D.A., “Progress in one-loop QCD computations”, Annu. Rev. Nucl. Part. S., 46, 109–148, (1996). For a related online version see: Z. Bern, et al., “Progress in One-Loop QCD Computations”, (February, 1996), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9602280. 1, 3.2, 3.4, 5, 5, 5, 6.1, 8
Article
ADS
Google Scholar
Bern, Z., Dixon, L.J., and Kosower, D.A., “A two-loop four-gluon helicity amplitude in QCD”, J. High Energy Phys., 0001, 027, (2000). For a related online version see: Z. Bern, et al., “A Two-Loop Four-Gluon Helicity Amplitude in QCD”, (January, 2000), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/0001001. 1, 5, 5
Article
ADS
Google Scholar
Bern, Z., Dixon, L.J., Perelstein, M., and Rozowsky, J.S., “One-loop n-point helicity amplitudes in (self-dual) gravity”, Phys. Lett. B, 444, 273–283, (1998). For a related online version see: Z. Bern, et al., “One-Loop n-Point Helicity Amplitudes in (Self-Dual) Gravity”, (September, 1998), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9809160. 1, 3.4, 6.1, 6.2, 8
Article
ADS
MathSciNet
Google Scholar
Bern, Z., Dixon, L.J., Perelstein, M., and Rozowsky, J.S., “Multi-leg one-loop gravity amplitudes from gauge theory”, Nucl. Phys. B, 546, 423–479, (1999). For a related online version see: Z. Bern, et al., “Multi-Leg One-Loop Gravity Amplitudes from Gauge Theory”, (November, 1998), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9811140. 1, 3.2, 3.4, 6.1, 6.2, 8
Article
ADS
MathSciNet
MATH
Google Scholar
Bern, Z., and Dunbar, D.C., “A mapping between Feynman and string motivated one-loop rules in gauge theories”, Nucl. Phys. B, 379, 562–601, (1992). 4
Article
ADS
MathSciNet
Google Scholar
Bern, Z., Dunbar, D.C., and Shimada, T., “String based methods in perturbative gravity”, Phys. Lett. B, 312, 277–284, (1993). For a related online version see: Z. Bern, et al., “String-Based Methods in Perturbative Gravity”, (July, 1993), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9307001. 1,1,4
Article
ADS
Google Scholar
Bern, Z., and Grant, A.K., “Perturbative gravity from QCD amplitudes”, Phys. Lett. B, 457, 23–32, (1999). For a related online version see: Z. Bern, et al., “Perturbative Gravity from QCD Amplitudes”, (April, 1999), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9904026. 1, 3.4, 4, 4, 4, 4, 4, 4, 8
Article
ADS
Google Scholar
Bern, Z., and Kosower, D.A., “The computation of loop amplitudes in gauge theories”, Nucl. Phys. B, 379, 451–461, (1992). 1, 5, 7.1
Article
ADS
MathSciNet
Google Scholar
Bern, Z., and Morgan, A.G., “Massive loop amplitudes from unitarity”, Nucl. Phys. B, 467, 479–509, (1996). For a related online version see: Z. Bern, et al., “Massive Loop Amplitudes from Unitarity”, (November, 1995), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9511336. 1, 5, 5, 5, 8
Article
ADS
Google Scholar
Bern, Z., Rozowsky, J.S., and Yan, B., “Two-loop four-gluon amplitudes in N=4 super-Yang-Mills”, Phys. Lett. B, 401, 273–282, (1997). For a related online version see: Z. Bern, et al., “Two-Loop Four-Gluon Amplitudes in N=4 Super-Yang-Mills”, (February, 1997), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9702424. 1, 7.1, 7.2
Article
ADS
Google Scholar
Cangemi, D., “Self-dual Yang-Mills theory and one-loop maximally helicity violating multi-gluon amplitudes”, Nucl. Phys. B, 484, 521–537, (1997). For a related online version see: D. Cangemi, “Self-dual Yang Mills Theory and One-Loop Maximally Helicity Violating Multi-Gluon Amplitudes”, (May, 1996), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9605208. 1,6.2
Article
ADS
Google Scholar
Carlip, S., “Quantum gravity: a progress report”, Rep. Prog. Phys., 64, 885–942, (2001). For a related online version see: S. Carlip, “Quantum Gravity: a Progress Report”, (August, 2001), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/gr-qc/0108040. 1
Article
ADS
MathSciNet
Google Scholar
Chalmers, G., “On the finiteness of N = 8 quantum supergravity”, (August, 2000), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/0008162. 7.3
Chalmers, G., and Siegel, W., “The self-dual sector of QCD amplitudes”, Phys. Rev. D, 54, 7628–7633, (1997). For a related online version see: G. Chalmers, et al., “The self-dual sector of QCD amplitudes”, (June, 1996), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9606061. 1,6.2
Article
ADS
Google Scholar
Collins, J.C., Renormalization: an introduction to renormalization group, and the operator product expansion, (Cambridge University Press, Cambridge, 1984). 5
Book
MATH
Google Scholar
Cutkosky, R.E., “Singularities and discontinuities of Feynman amplitudes”, J. Math. Phys., 1, 429, (1960). 5, 5
Article
ADS
MathSciNet
MATH
Google Scholar
De Causmaecker, P., Gastmans, R., Troost, W., and Wu, T.T., “Helicity amplitudes for massless QED”, Phys. Lett. B, 105, 215–218, (1981). 3.2, 3.3
Article
ADS
Google Scholar
Deser, S., “The immortal Bel-Robinson tensor”, in Martin, J., Ruiz, E., Atrio, F., and Molina, A., eds., Relativity and Gravitation in General: Proc. of the Spanish Relativity Meeting in Honour of the 65th Birthday of Lluis Bel, (World Scientific, Singapore, 1999). For a related online version see: S. Deser, “The Immortal Bel-Robinson Tensor”, (January, 1999), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/gr-gc/9901007. 7.3
Google Scholar
Deser, S., Franklin, J.S., and Seminara, D., “Graviton graviton scattering, Bel-Robinson and energy”, Class. Quantum Grav., 16, 2815–2821, (1999). For a related online version see: S. Deser, et al., “Graviton Graviton Scattering, Bel-Robinson and Energy (Pseudo)-Tensors”, (May, 1999), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/gr-gc/9905021. 7.3
Article
ADS
MathSciNet
MATH
Google Scholar
Deser, S., Kay, J.H., and Stelle, K.S., “Renormalizability properties of supergravity”, Phys. Rev. Lett., 38, 527–530, (1977). 1, 1
Article
ADS
Google Scholar
Deser, S., and Seminara, D., “Counterterms/M-theory corrections to D=11 supergravity”, Phys. Rev. Lett., 82, 2435–2438, (1999). For a related online version see: S. Deser, et al., “Counterterms/M-theory Corrections to D=11 Supergravity”, (December, 1998), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9812136. 1, 7.3
Article
ADS
MathSciNet
MATH
Google Scholar
Deser, S., and Seminara, D., “Tree amplitudes and two-loop counterterms in D=11 supergravity”, Phys. Rev. D, 62, 084010–1–084010–8, (2000). For a related online version see: S. Deser, et al., “Tree Amplitudes and Two loop Counterterms in D=11 Supergravity”, (February, 2000), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/0002241. 1, 7.3
Article
ADS
MathSciNet
Google Scholar
Deser, S., Tsao, H.S., and van Nieuwenhuizen, P., “One-loop divergences of the Einstein-Yang-Mills system”, Phys. Rev. D, 10, 3337–3342, (1974). 1, 1
Article
ADS
Google Scholar
Deser, S., and van Nieuwenhuizen, P., “Nonrenormalizability of the quantized Dirac-Einstein system”, Phys. Rev. D, 10, 411–420, (1974). 1, 1
Article
ADS
MathSciNet
Google Scholar
DeWitt, B.S., “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162, 1195, (1967). 2.1, 2.1, 3.2
Article
ADS
MATH
Google Scholar
DeWitt, B.S., “Quantum theory of gravity. III. Applications of the covariant theory”, Phys. Rev., 162, 1239, (1967). 2.1, 2.1, 3.2
Article
ADS
MATH
Google Scholar
DeWitt, B.S., in Isham, C., Penrose, R., and Sciama, D., eds., Quantum gravity II, (OUP, Oxford, 1981). 1, 4
Di Vecchia, P., Magnea, L., Lerda, A., Marotta, R., and Russo, R., “Two-loop scalar diagrams from string theory”, Phys. Lett. B, 388, 65–76, (1996). For a related online version see: P. Di Vecchia, et al., “Two-loop scalar diagrams from string theory”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9607141. 1
Article
ADS
MathSciNet
Google Scholar
Dixon, L.J., “Calculating scattering amplitudes efficiently”, in Soper, D.E., ed., QCD and Beyond: Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics (TASI’95), (World Scientific, Singapore, 1996). For a related online version see: L.J. Dixon, “Calculating Scattering Amplitudes Efficiently”, (January, 1996), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9601359. 1, 3.2, 3.2
Google Scholar
Dixon, L.J., Harvey, J.A., Vafa, C., and Witten, E., “Strings on orbifolds”, Nucl. Phys. B, 261, 678–686, (1985). 3.1, 3.2
Article
ADS
MathSciNet
Google Scholar
Dixon, L.J., Harvey, J.A., Vafa, C., and Witten, E., “Strings on orbifolds. 2”, Nucl. Phys. B, 274, 285–314, (1986). 3.1, 3.2
Article
ADS
MathSciNet
Google Scholar
Donoghue, J.F., “General Relativity as an effective field theory: the leading quantum corrections”, Phys. Rev. D, 50, 3874, (1994). For a related online version see: J.F. Donoghue, “General Relativity as an effective field theory: the leading quantum corrections”, (May, 1994), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/gr-gc/9405057. 2.2, 6
Article
ADS
Google Scholar
Duff, M.J., “Self-Duality and Helicity in Supergravity”, in van Nieuwenhuizen, P., and Freedman, D.Z., eds., Supergravity. Proceedings of 1979 Supergravity Workshop in Stony Brook, (North Holland, Amsterdam, 1980). 1, 6.2, 8
Google Scholar
Duff, M.J., and Isham, C.J., “Self-duality, helicity, and coherent states in non-abelian gauge theories”, Nucl. Phys. B, 162, 271–284, (1980). 1, 6.2
Article
ADS
MATH
Google Scholar
Dunbar, D.C., Julia, B., Seminara, D., and Trigiante, M., “Counterterms in type I supergravities”, J. High Energy Phys., 0001, 046, (2000). For a related online version see: D.C. Dunbar, et al., “Counterterms in type I Supergravities”, (November, 1999), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9911158. 1,8
Article
ADS
MathSciNet
MATH
Google Scholar
Dunbar, D.C., and Norridge, P.S., “Calculation of graviton scattering amplitudes using string based methods”, Nucl. Phys. B, 433, 181–208, (1995). For a related online version see: D.C. Dunbar, et al., “Calculation of Graviton Scattering Amplitudes using String-Based Methods”, (August, 1994), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9408014. 1, 1,6.1
Article
ADS
Google Scholar
Dunbar, D.C., and Norridge, P.S., “Infinities within graviton scattering amplitudes”, Class. Quantum Grav., 14, 351–365, (1997). For a related online version see: D.C. Dunbar, et al., “Infinities within graviton scatter ing amplitudes”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9512084. 1
Article
ADS
MathSciNet
MATH
Google Scholar
Dunbar, D.C., and Turner, N.W., “Ultra-violet infinities and counterterms in higher dimensional Yang-Mills”, (March, 2002), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/0203104. 1
Ellis, R.K., Stirling, W.J., and Webber, B.R., QCD and collider physics, (Cambridge University Press, Cambridge, 1996). 1
Book
Google Scholar
Faddeev, L.D., and Popov, V.N., “Feynman diagrams for the Yang-Mills field”, Phys. Lett. B, 25, 29, (1967). 7.1
Article
ADS
Google Scholar
Faddeev, L.D., and Popov, V.N., “Covariant quantization of the gravitational field”, Sov. Phys. Usp., 16, 777, (1974). 5
Article
ADS
MathSciNet
Google Scholar
Fradkin, E.S., and Vilkovisky, G.A., “Quantization of relativistic systems with constraints”, Phys. Lett. B, 55, 224–226, (1975). 5
Article
ADS
MathSciNet
MATH
Google Scholar
Friedan, D., Martinec, E.J., and Shenker, S.H., “Conformal invariance, supersymmetry and string theory”, Nucl. Phys. B, 271, 93, (1986). 3.3
Article
ADS
MathSciNet
Google Scholar
Frizzo, A., Magnea, L., and Russo, R., “Scalar field theory limits of bosonic string amplitudes”, Nucl. Phys. B, 579, 379–410, (2000). For a related online version see: A. Frizzo, et al., “Scalar field theory lim its of bosonic string amplitudes”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9912183. 1
Article
ADS
MathSciNet
MATH
Google Scholar
Gasser, J., and Leutwyler, H., “Chiral perturbation theory: expansions in the mass of the strange quark”, Nucl. Phys. B, 250, 465–516, (1985). 2.2, 6
Article
ADS
Google Scholar
Gervais, J.L., and Neveu, A., “Feynman rules for massive gauge fields with dual diagram topology”, Nucl. Phys. B, 46, 381–401, (1972). 4
Article
ADS
Google Scholar
Goroff, M.H., and Sagnotti, A., “The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266, 709–736, (1986). 1, 1
Article
ADS
Google Scholar
Green, M.B., Gutperle, M., and Vanhove, P., “One loop in eleven dimensions”, Phys. Lett. B, 409, 177–184, (1997). For a related online version see: M.B. Green, et al., “One loop in eleven dimensions”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9706175. 7.3
Article
ADS
MathSciNet
MATH
Google Scholar
Green, M.B., Kwon, H.-h., and Vanhove, P., “Two loops in eleven dimensions”, Phys. Rev. D, 61, 104010, (2000). For a related online version see: M.B. Green, et al., “Two loops in eleven dimensions”, (Oc tober, 1999), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9910055. 1, 7.2, 7.3
Article
ADS
MathSciNet
Google Scholar
Green, M.B., Schwarz, J.H., and Brink, L., “N=4 Yang-Mills and N=8 supergravity as limits of string theories”, Nucl. Phys. B, 198, 474–492, (1982). 3, 7.1
Article
ADS
Google Scholar
Green, M.B., Schwarz, J.H., and Witten, E., Superstring theory, Cambridge Monographs On Mathematical Physics, (Cambridge University Press, Cambridge, 1987). 1, 3, 3.1, 3.1, 3.1, 3.1
Google Scholar
Grisaru, M.T., and Pendleton, H.N., “Some properties of scattering amplitudes in supersymmetric theories”, Nucl. Phys. B, 124, 81–92, (1977). 1, 6.1
Article
ADS
MathSciNet
Google Scholar
Grisaru, M.T., Pendleton, H.N., and van Nieuwenhuizen, P., “Supergravity and the S matrix”, Phys. Rev. D, 15, 996–1006, (1977). 1
Article
ADS
Google Scholar
Grisaru, M.T., and Siegel, W., “Supergraphity. (II.) Manifestly covariant rules and higher-loop finiteness”, Nucl. Phys. B, 201, 292–314, (1982). Erratum: Nucl. Phys. B, 206, 496 (1982). 1
Article
ADS
Google Scholar
Grisaru, M.T., van Nieuwenhuizen, P., and Vermaseren, J.A., “One loop renormalizability of pure supergravity and of Maxwell Einstein theory in extended supergravity”, Phys. Rev. Lett., 37, 1662–1666, (1976). 1
Article
ADS
MathSciNet
Google Scholar
Gross, D. J., Harvey, J. A., Martinec, E.J., and Rohm, R., “Heterotic string theory. 1. The free heterotic string”, Nucl. Phys. B, 256, 253–284, (1985). 3.1
Article
ADS
MathSciNet
Google Scholar
Gross, D.J., Harvey, J.A., Martinec, E.J., and Rohm, R., “Heterotic string theory. 2. The interacting heterotic string”, Nucl. Phys. B, 267, 75–124, (1986). 3.1
Article
ADS
MathSciNet
Google Scholar
Gross, D.J., and Witten, E., “Superstring modifications of Einstein’s equations”, Nucl. Phys. B, 277, 1–10, (1986). 7.3
Article
ADS
MathSciNet
Google Scholar
Hehl, F.W., McCrea, J.D., Mielke, E.W., and Neeman, Y., “Metric Afine Gauge Theory Of Gravity: Field Equations, Noether Identities, World Spinors, And Breaking Of Dilation Invariance”, Phys. Rep., 258, 1–171, (1995). For a related online version see: F.W. Hehl, et al., “Metric-Afine Gauge Theory Of Gravity: Field Equations, Noether Identities, World Spinors, And Breaking Of Dilation Invariance”, (February, 1994), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxxlanl.gov/abs/gr-gc/9402012. 1
Article
ADS
MathSciNet
Google Scholar
Henneaux, M., “Hamiltonian form of the path integral for theories with a gauge freedom”, Phys. Rep., 126, 1–66, (1985). 5
Article
ADS
MathSciNet
Google Scholar
Howe, P.S., and Stelle, K.S., “The ultraviolet properties of supersymmetric field theories”, Int. J. Mod. Phys. A, 4, 1871–1912, (1989). 1, 1, 7, 7.3, 7.3
Article
ADS
MathSciNet
Google Scholar
Howe, P.S., Stelle, K.S., and Townsend, P.K., “Superactions”, Nucl. Phys. B, 191, 445–464, (1981). 1, 1
Article
ADS
Google Scholar
Ivanenko, D., and Sardanashvily, G., “The Gauge Treatment Of Gravity”, Phys. Rep., 94, 1–45, (1983). 1
Article
ADS
MathSciNet
Google Scholar
Kallosh, R.E., “Counterterms in extended supergravities”, Phys. Lett. B, 99, 122–127, (1981). 1
Article
ADS
MathSciNet
Google Scholar
Kaplan, D. B., “Effective field theories”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/nucl-th/9506035. Lectures at the 7th summer school in nuclear physics symmetries in Seattle, WA, June 18–30, 1995. 2.2, 6
Kawai, H., Lewellen, D.C., and Tye, S.H., “A relation between tree amplitudes of closed and open strings”, Nucl. Phys. B, 269, 1–23, (1986). 1, 3, 3.2, 3.2, 8
Article
ADS
MathSciNet
Google Scholar
Kawai, H., Lewellen, D.C., and Tye, S.H., “Construction of fermionic string models in four-dimensions”, Nucl. Phys. B, 288, 1–76, (1987). 3.1, 3.2
Article
ADS
MathSciNet
Google Scholar
Kleiss, R., and Stirling, W. J., “Spinor techniques for calculating proton anti-proton to W or Z plus jets”, Nucl. Phys. B, 262, 235, (1985). 3.2, 3.3
Article
ADS
Google Scholar
Koba, Z., and Nielsen, H.B., “Manifestly crossing invariant parametrization of N meson amplitude”, Nucl. Phys. B, 12, 517, (1969). 3.1
Article
ADS
Google Scholar
Kosower, D.A., “Light-cone recurrence relations for QCD amplitudes”, Nucl. Phys. B, 335, 23–44, (1990). 3.3
Article
ADS
Google Scholar
Kosower, D.A., Lee, B.H., and Nair, V.P., “Multi gluon scattering: a string based calculation”, Phys. Lett. B, 201, 85–89, (1988). 3.2
Article
ADS
MathSciNet
Google Scholar
Landau, L.D., “On analytic properties of vertex parts in quantum field theory”, Nucl. Phys., 13, 181–192, (1959). 5, 5
Article
MathSciNet
MATH
Google Scholar
Leznov, A.N, “On equivalence of four-dimensional selfduality equations to continual analog of the main chiral field problem”, Theor. Math. Phys., 73, 1233–1237, (1988). Teor. Mat. Fiz. 73, 302, (1988). 1, 6.2
Article
Google Scholar
Leznov, A.N, and Mukhtarov, M.A., “Deformation of algebras and solution of selfduality equation”, J. Math. Phys., 28, 2574–2578, (1987). 1, 6.2
Article
ADS
MathSciNet
MATH
Google Scholar
Maldacena, J., “The Large N Limit of Superconformal Field Theories and Supergravity”, Adv. Theor. Math. Phys., 2, 231–252, (1998). For a related online version see: J. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity”", (November, 1997), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9711200. also in: Int. J. Theor. Phys. 38 1113–1133, (1999). 1
Article
ADS
MathSciNet
MATH
Google Scholar
Mandelstam, S., “Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity. General Theory”, Phys. Rev., 112, 1344–1360, (1958). 5, 5
Article
ADS
MathSciNet
Google Scholar
Mandelstam, S., “Analytic Properties of Transition Amplitudes in Perturbation Theory”, Phys. Rev., 115, 1741–1751, (1959). 5, 5
Article
ADS
MathSciNet
Google Scholar
Mandelstam, S., “Light-cone superspace and the ultraviolet finiteness of the N=4 model”, Nucl. Phys. B, 213, 149–168, (1983). 7
Article
ADS
MathSciNet
Google Scholar
Mangano, M.L., Parke, S., and Xu, Z., “Duality and multi-gluon scattering”, Nucl. Phys. B, 298, 653–672, (1988). 3.2
Article
ADS
Google Scholar
Mangano, M.L., and Parke, S.J., “Multiparton amplitudes in gauge theories”, Phys. Rep., 200, 301–367, (1991). 1, 3.2, 3.2, 3.4, 3.4
Article
ADS
Google Scholar
Manohar, A. V., “Effective field theories”, (June, 1996), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9606222. 1996 Schladming Lectures: Perturbative and nonper turbative aspects of quantum field theory in Schladming, Austria, March 2–9, 1996. 2.2, 6
M.T., Grisaru., “Two loop renormalizability of supergravity”, Phys. Lett. B, 66, 75–76, (1977). 1
Article
ADS
Google Scholar
Narain, K.S., “New heterotic string theories in uncompactified dimensions less than 10”, Phys. Lett. B, 169, 41–46, (1986). 3.1, 3.2
Article
ADS
MathSciNet
Google Scholar
Narain, K.S., Sarmadi, M.H., and Witten, E., “A note on toroidal compactification of heterotic string theory”, Nucl. Phys. B, 279, 369, (1987). 3.1, 3.2
Article
ADS
MathSciNet
Google Scholar
Parke, S.J., and Taylor, T.R., “Perturbative QCD utilizing extended supersymmetry”, Phys. Lett. B, 157, 81–84, (1985). Erratum: Phys. Lett. B, 174, 465, (1985). 6.1
Article
ADS
Google Scholar
Parke, S.J., and Taylor, T.R., “Amplitude for n-Gluon Scattering”, Phys. Rev. Lett., 56, 2459–2460, (1986). 3.3
Article
ADS
Google Scholar
Paton, J. E., and Chan, H. M., “Generalized Veneziano model with isospin”, Nucl. Phys. B, 10, 516, (1969). 3.1, 3.2
Article
ADS
Google Scholar
Peskin, M.E., and Schroeder, D.V., An introduction to quantum field theory, (Addison-Wesley, Reading, 1995). 1, 2.1, 3.2
Google Scholar
Plebanski, J.F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16, 2395, (1975). 1, 6.2, 8
Article
ADS
MathSciNet
Google Scholar
Plebanski, J.F., and Przanowski, M., “The Lagrangian of a self-dual gravitational field as a limit of the SDYM lagrangian”, Phys. Lett. A, 212, 22–28, (1996). For a related online version see: J.F. Plebanski, et al., “The Lagrangian of a Self-Dual Gravitational Field as a Limit of the SDYM Lagrangian”, (May, 1996), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9605233. 1,6.2,8
Article
ADS
MathSciNet
MATH
Google Scholar
Polchinski, J., String theory. Vol. 1: An introduction to the bosonic string, (Cambridge University Press, Cambridge, 1998). 1, 3, 3.1
Book
MATH
Google Scholar
Polchinski, J., String theory. Vol. 2: Superstring theory and beyond, (Cambridge University Press, Cambridge, 1998). 1, 3, 3.1
Book
MATH
Google Scholar
Roland, K., “Multiloop gluon amplitudes in pure gauge theories”, Phys. Lett. B, 289, 148–152, (1992). 1
Article
ADS
Google Scholar
Roland, K., and Sato, H. T., “Multiloop world-line Green functions from string theory”, Nucl. Phys. B, 480, 99–124, (1996). For a related online version see: K. Roland, et al., “Multiloop world-line Green functions from string theory”, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9604152. 1
Article
ADS
MathSciNet
MATH
Google Scholar
Roland, K., and Sato, HT., “Multiloop ϕ3 amplitudes from bosonic string theory”, Nucl. Phys. B, 515, 488–508, (11998). For a related online version see: K. Roland, et al., “Multiloop ϕ3 amplitudes from bosonic string theory”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9709019. 1
Article
ADS
MathSciNet
MATH
Google Scholar
Rozowsky, J.S., “Feynman diagrams and cutting rules”, (September, 1997), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9709423. 1,5,5
Russo, J.G., and Tseytlin, A.A., “One-loop four-graviton amplitude in eleven-dimensional supergravity”, Nucl. Phys. B, 508, 245–259, (1997). For a related online version see: J.G. Russo, et al., “One-loop four-graviton amplitude in eleven-dimensional supergravity”, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9707134. 7.3
Article
ADS
MathSciNet
MATH
Google Scholar
Sannan, S., “Gravity as the limit of the type II superstring theory”, Phys. Rev. D, 34, 1749–1758, (1986). 3, 4
Article
ADS
Google Scholar
Scherk, J., and Schwarz, J.H., “Dual Model Approach to a Renormalizable Theory of Gravitation”, in Schwarz, J.H., ed., Superstrings: The first 15 years of superstring theory, volume 1, 218–222, (World Scientific, Singapore, 1985). 3
Chapter
Google Scholar
Schmidt, M.G., and Schubert, C., “Multiloop calculations in the string inspired formalism: The single spinor loop in QED”, Phys. Rev. D, 53, 2150–2159, (1996). For a related online version see: M.G. Schmidt, et al., “Multiloop calculations in the string inspired formalism: The single spinor loop in QED”, (October, 1994), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9410100. 1
Article
ADS
Google Scholar
Schubert, C., “Perturbative quantum field theory in the string-inspired formalism”, Phys. Rep., 355, 73–234, (2001). For a related online version see: C. Schubert, “Perturbative Quantum Field Theory in the String Inspired Formalism”, (January, 2001), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/0101036. 1,1
Article
ADS
MathSciNet
MATH
Google Scholar
Selivanov, K.G., “Gravitationally dressed Parke-Taylor amplitudes”, Mod. Phys. Lett. A, 12, 3087–3090, (1997). For a related online version see: K.G. Selivanov, “Gravitationally dressed Parke-Taylor amplitudes”, (Novem ber, 1997), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9711111. 3.3
Article
ADS
Google Scholar
Siegel, W., “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84, 193–196, (1979). 5, 7.1
Article
ADS
MathSciNet
Google Scholar
Siegel, W., “Superspace duality in low-energy superstrings”, Phys. Rev. D, 48, 2826–2837, (1993). For a related online version see: W. Siegel, “Superspace Duality in Low-Energy Superstrings”, (May, 1993), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9305073. 1, 4, 8
Article
ADS
MathSciNet
Google Scholar
Siegel, W., “Two vierbein formalism for string inspired axionic gravity”, Phys. Rev. D, 47, 5453–5459, (1993). For a related online version see: W. Siegel, “Two-Vierbein Formalism for String-Inspired Axionic Gravity”, (February, 1993), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9302036. 1, 4,8
Article
ADS
MathSciNet
Google Scholar
Siegel, W., “Manifest Duality in Low-Energy Superstrings”, in Halpern, M.B., Sevrin, A., and Rivlis, G., eds., Proceedings of Strings 1993, (World Scientific, Singapore, 1994). For a related online version see: W. Siegel, “Manifest Duality in Low-Energy Superstrings”, (August, 1993), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9308133. 1, 4, 8
Google Scholar
Singleton, D., “General relativistic analog solutions for Yang-Mills theory”, Theor. Math. Phys., 117, 1351–1363, (1998). For a related online version see: D. Singleton, “General relativistic analog solutions for Yang Mills theory”, (April, 1999), [Online Los Alamos Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/9904125. 1
Article
MATH
Google Scholar
Smirnov, V.A., “Analytical result for dimensionally regularized massless on-shell double box”, Phys. Lett. B, 460, 397–404, (1999). For a related online version see: V.A. Smirnov, “Analytical Result for Dimensionally Regularized Massless On-shell Double Box”, (May, 1999), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9905323. 7.2
Article
ADS
Google Scholar
Stelle, K.S., “Revisiting Supergravity and Super Yang-Mills Renormalization (March, 2002), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-th/0203015. 1, 1, 7.3, 7.3, 8
Stelle, K.S., “Extended Supercurrents and the Ultraviolet Finiteness of N=4 Supersymmetric Yang Mills Theory”, in Duff, M.J., and Isham, C.J., eds., Quantum structure of space and time: Proceedings of the Nuffield Workshop, London 3–21 August 1981, 337–361, (Cambridge University Press, Cambridge, 1981). 7
Google Scholar
’t Hooft, G., in Acta Universitatis Wratislavensis no. 38, 12th Winter School of Theoretical Physics in Karpacz; Functional and probabilistic methods in quantum field theory, (1975). Vol. 1. 1, 4
Google Scholar
’t Hooft, G., and Veltman, M., “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44, 189–213, (1972). 5
Article
ADS
MathSciNet
Google Scholar
’t Hooft, G., and Veltman, M.J., “One loop divergencies in the theory of gravitation,”, Ann. Inst. Henri Poincare, A, 20, 69–94, (1974). 1, 1
ADS
MATH
Google Scholar
Tausk, J.B., “Non-planar massless two-loop Feynman diagrams with four on-shell legs”, Phys. Lett. B, 469, 225–234, (1999). For a related online version see: J.B. Tausk, “Non-planar massless two-loop Feynman dia grams with four on-shell legs”, (September, 1999), [Online Los Alamos Archive Preprint]: cited on 15 April 2002, http://xxx.lanl.gov/abs/hep-ph/9909506. 7.2
Article
ADS
MathSciNet
MATH
Google Scholar
Tomboulis, E., “On the two loop divergences of supersymmetric gravitation”, Phys. Lett. B, 67, 417–420, (1977). 1
Article
ADS
Google Scholar
Utiyama, R., “Invariant Theoretical Interpretation of Interaction”, Phys. Rev., 101, 1597–1607, (1956). 1
Article
ADS
MathSciNet
MATH
Google Scholar
van de Ven, A.E.M., “Two-loop quantum gravity”, Nucl. Phys. B, 378, 309–366, (1992). 1, 1
Article
ADS
MathSciNet
Google Scholar
van Neerven, W.L., “Dimensional regularization of mass and infrared singularities in two-loop on-shell vertex functions”, Nucl. Phys. B, 268, 453–488, (1986). 5
Article
ADS
Google Scholar
Veltman, M.J., “Quantum theory of Gravitation”, in Balian, R., and Zinn-Justin, J., eds., Methods in Field Theory, Proceedings of the Les Houches Summer School 1975, 265–327, (North-Holland, Amsterdam, 1976). 1, 2.1, 2.1, 3.2
Google Scholar
Weinberg, S., “Infrared photons and gravitons”, Phys. Rev. B, 140, 516–524, (1965). 3.4, 3.4, 6.2, 8
Article
ADS
MathSciNet
Google Scholar
Weinberg, S., “Phenomenological lagrangians”, Physica, 96, 327–340, (1979). 2.2, 6
Article
Google Scholar
Weinberg, S., The quantum theory of fields, (Cambridge University Press, Cambridge, 1995). 1, 2.1, 3.2
Book
Google Scholar
Xu, Z., Zhang, D.H., and Chang, L., “Helicity amplitudes for multiple bremsstrahlung in massless nonabelian gauge theories”, Nucl. Phys. B, 291, 392–428, (1987). 3.2, 3.3
Article
ADS
Google Scholar
Yang, C.N., “Condition of Self-Duality for SU(2) Gauge Fields on Euclidean Four-Dimensional Space”, Phys. Rev. Lett., 38, 1377–1379, (1977). 1, 6.2
Article
ADS
MathSciNet
Google Scholar
Yoneya, T., “Connection of dual models to electrodynamics and gravidynamics”, Prog. Theor. Phys., 51, 1907–1920, (1974). 3
Article
ADS
Google Scholar