Abrahams, A. M., and Evans, C. R., “Critical Behavior and Scaling in Vacuum Axisymmetric Gravitational Collapse”, Phys. Rev. Lett., 70, 2980–2983, (1993). 2.2.1, 2.2.4
ADS
Google Scholar
Abrahams, A. M., Heiderich, K. R., Shapiro, S. L., and Teukolsky, S. A., “Vacuum Initial Data, Singularities, and Cosmic Censorship”, Phys. Rev. D, 46, 2452–2463, (1992). 2.1.3
ADS
MathSciNet
Article
Google Scholar
Andersson, L., and Rendall, A. D., “Quiescent Cosmological Singularity”, Commun. Math. Phys., 218, 479–511, (2001). For a related online version see: L. Andersson, et al., “Quiescent Cosmological Singularity”, (January, 2000), [Online Los Alamos Archive Preprint]: cited on 17 Jan 2000, http://xxx.lanl.gov/abs/gr-gc/0001047. 1, 3.4.4
ADS
MATH
Article
Google Scholar
Anninos, P., “Computational Cosmology: from the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, 2001-2anninos, (February, 2001), [Online Journal Article]: cited on 2 Dec 2001, http://www.livingreviews.org/Articles/Volume4/2001-2anninos/. 3.1
Anninos, P., Centrella, J., and Matzner, R. A., “Nonlinear Wave Solutions to the Planar Vacuum Einstein Equations”, Phys. Rev. D, 43, 1825–1838, (1991). 3.4.1
ADS
Article
Google Scholar
Anninos, P., Centrella, J., and Matzner, R. A., “Numerical Methods for Solving the Planar Vacuum Einstein Equations”, Phys. Rev. D, 43, 1808-1824, (1991).3.4.1
ADS
Google Scholar
Ashtekar, A., Beetle, C., Dreyer, O., Fairhurs, S., Krishnan, B., Lewandowski, J., and Wisniewski, J., “Generic Isolated Horizons and Their Applications”, Phys. Rev. Lett., 85, 3564–3567, (2000). For a related online version see: A. Ashtekar, et al., “Generic Isolated Horizons and Their Applications”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 17 Aug 2000, http://xxx.lanl.gov/abs/gr-qc/000600C. 2.1.1
ADS
MathSciNet
MATH
Article
Google Scholar
Bañados, M., Teitelboim, C., and Zanelli, J., “Black Hole in Three-Dimensional Spacetime”, Phys. Rev. Lett., 69, 1849–1851, (1992). 2.2.4
ADS
MathSciNet
MATH
Article
Google Scholar
Barrabès, C., Gremain, A., Lesigne, E., and Letelier, P. S., “Geometric Inequalities and the Hoop Conjecture”, Class. Quantum Grav., 9, L105-L110, (1992). 2.1.2
ADS
MathSciNet
MATH
Article
Google Scholar
Barrabès, C., Israel, W., and Letelier, P. S., “Analytic Models of Non-spherical Collapse, Cosmic Censorship and the Hoop Conjecture”, Phys. Lett. A, 160, 41–44, (1991). 2.1.2, 2.1.3
ADS
MathSciNet
Article
Google Scholar
Barrow, J. D., “Chaotic Behaviour in General Relativity”, Phys. Rep., 85, 1–49, (1982). 3.3.1
ADS
MathSciNet
Article
Google Scholar
Barrow, J. D., and Levin, J., “Chaos in the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 80, 656–659, (1998). For a related online version see: J. D. Barrow, et al., “Chaos in the Einstein-Yang-Mills Equations”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 20 Jun 1997, http://xxx.lanl.gov/abs/gr-gc/9706065. 3.3.3
ADS
MathSciNet
MATH
Article
Google Scholar
Barrow, J. D., and Tipler, F., “Analysis of the Generic Singularity Studies by Belinskii, Khalatnikov, and Lifshitz”, Phys. Rep., 56, 371–402, (1979). 1, 3.4.1
ADS
MathSciNet
Article
Google Scholar
Bartnik, R., and McKinnon, J., “Particle-like Solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141–144, (1988). 2.2.3
ADS
MathSciNet
Article
Google Scholar
Belanger, Z. B., Adaptive Mesh Refinement in the T2 Symmetric Spacetime, Masters Thesis, (Oakland University, Rochester, 2001). 3.4.2
Google Scholar
Belinskii, V. A., “Turbulence of a Gravitational Field near a Cosmological Singularity”, JETP Lett., 56, 421–425, (1992). 3.4.1
ADS
Google Scholar
Belinskii, V. A., and Khalatnikov, I. M., “General Solution of the Gravitational Equations with a Physical Singularity”, Sov. Phys. JETP, 30, 1174–1180, (1969). 1
ADS
MathSciNet
Google Scholar
Belinskii, V. A., and Khalatnikov, I. M., “On the Nature of the Singularities in the General Solution of the Gravitational Equations”, Sov. Phys. JETP, 29, 911–917, (1969). 1
ADS
Google Scholar
Belinskii, V. A., and Khalatnikov, I. M., “General Solution of the Gravitational Equations with a Physical Oscillatory Singularity”, Sov. Phys. JETP, 32, 169–172, (1971). 1, 2.3.2
ADS
Google Scholar
Belinskii, V. A., and Khalatnikov, I. M., “Effect of Scalar and Vector Fields on the Nature of the Cosmological Singularity”, Sov. Phys. JETP, 36, 591–597, (1973). 3.3.3, 3.4.4
ADS
MathSciNet
Google Scholar
Belinskii, V. A., Khalatnikov, I. M., and Lifshitz, E. M., “A General Solution of the Einstein Equations with a Time Singularity”, Adv. Phys., 31, 639–667, (1982). 1
ADS
Article
Google Scholar
Belinskii, V. A., Lifshitz, E. M., and Khalatnikov, I. M., “Oscillatory Approach to the Singular Point in Relativistic Cosmology”, Sov. Phys. Usp., 13, 745–765, (1971). 1, 3.1, 3.3.1, 3.4.1
ADS
Article
Google Scholar
Berger, B. K., “A Spectral Symplectic Method for Numerical Investigation of Cosmological Singularities”, (January, 2000), [Online Talk]: cited on 20 Jan 2000, http://online.itp.ucsb.edu/online/numre100/berger/. 3.4.3
Berger, B. K., “On the Nature of the Generic Big Bang”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 6 Jan 1998, http://xxx.lanl.gov/abs/gr-gc/980101C. 3.4.4
Berger, B. K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 1, 1998-7berger, (May, 1998), [Online Journal Article]: cited on 3 May 1998, http://www.livingreviews.org/Articles/Volume1/1998-7berger. (document)
Berger, B. K., “Quantum Graviton Creation in a Model Universe”, Ann. Phys. (N. Y.), 83, 458–490, (1974). 3.4.1, 3.4.2
ADS
Article
Google Scholar
Berger, B. K., “Comments on the Computation of Liapunov Exponents for the Mixmaster Universe”, Gen. Relativ. Gravit., 23, 1385–1402, (1991). 3.3.1
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., “How to Determine Approximate Mixmaster Parameters from Numerical Evolution of Einstein’s Equations”, Phys. Rev. D, 49, 1120–1123, (1994). For a related online version see: B. K. Berger, “How to Determine Approximate Mixmaster Parameters from Numerical Evolution of Einstein’s Equations”, (August, 1993), [Online Los Alamos Archive Preprint]: cited on 17 Aug 1993, http://xxx.lanl.gov/abs/gr-qc/9308016. 1, 3.3.1
ADS
Article
Google Scholar
Berger, B. K., “Comment on the ‘Chaotic’ Singularity in Some Magnetic Bianchi VI0 Cosmologies”, Class. Quantum Grav., 13, 1273–1276, (1996). For a related online version see: B. K. Berger, “Comment on the ‘Chaotic’ Singularity in Some Magnetic Bianchi VI0 Cosmologies”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 1 Dec 1995, http://xxx.lanl.gov/abs/gr-gc/9512005. 3.1, 3.3.1
ADS
MATH
Article
Google Scholar
Berger, B. K., “Numerical Investigation of Cosmological Singularities”, in Hehl, F. W., Puntigam, R. A., and Ruder, H., eds., Relativity and Scientific Computing, 152–169, (Springer, Berlin, 1996). For a related online version see: B. K. Berger, “Numerical Investigation of Cosmological Singularities”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 1 Dec 1995, http://xxx.lanl.gov/abs/gr-gc/9512004. 3.2.1, 3.4.4
Chapter
Google Scholar
Berger, B. K., “Numerical Investigation of Singularities”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, 57–78, (World Scientific, Singapore, 1997). For a related on line version see: B. K. Berger, “Numerical Investigation of Singularities”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 1 Dec 1995, http://xxx.lanl.gov/abs/gr-gc/9512003. (document), 3.4.4
Google Scholar
Berger, B. K., “Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, in Weikard, R., and Weinstein, G., eds., Differential Equations and Mathematical Physics: Proceedings of an International Conference Held at the University of Alabama, (American Mathematical Society, Providence, 2000). For a related online version see: B. K. Berger, “Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, (June, 2001), [Online Los Alamos Archive Preprint]: cited on 4 Jun 2001, http://xxx.lanl.gov/abs/gr-gc/0106009. 1, 3.4.1
Google Scholar
Berger, B. K., “Influence of Scalar Fields on the Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, Phys. Rev. D, 61, 023508, (2000). For a related online version see: B. K. Berger, “Influence of Scalar Fields on the Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, (July, 1999), [Online Los Alamos Archive Preprint]: cited on 26 Jul 1999, http://xxx.lanl.gov/abs/gr-gc/9907083. 3.4.1
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., Chrusciel, P. T., and Moncrief, V., “On ‘Asymptotically Flat’ Space-Times with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N. Y.), 237, 322–354, (1995). For a related online version see: B. K. Berger, et al., “On ‘Asymptotically Flat’ Space-Times with G2-Invariant Cauchy Surfaces”, (April, 1994), [Online Los Alamos Archive Preprint]: cited on 6 Apr 1994, http://xxx.lanl.gov/abs/gr-gc/9404005. 2.1.2, 2.1.4
ADS
MATH
Article
Google Scholar
Berger, B. K., and Garfinkle, D., “Phenomenology of the Gowdy Model on T3 × R”, Phys. Rev. D, 57, 4767–4777, (1998). For a related online version see: B. K. Berger, et al., “Phenomenology of the Gowdy Model on T3 × R”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 21 Oct 1997, http://xxx.lanl.gov/abs/gr-gc/9710102. 1, 2.3.2, 3.2.2, 3.4.1, 3.4.2
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., Garfinkle, D., Isenberg, J., Moncrief, V., and Weaver, M., “The Singularity in Generic Gravitational Collapse is Spacelike, Local, and Oscillatory”, Mod. Phys. Lett. A, 13, 1565–1573, (1998). For a related online version see: B. K. Berger, et al., “The Singularity in Generic Gravitational Collapse is Spacelike, Local, and Oscillatory”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 17 May 1998, http://xxx.lanl.gov/abs/gr-gc/9805063. 1, 2.3.2, 3.4.1, 6
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., Garfinkle, D., and Moncrief, V., “Numerical Study of Cosmological Singularities”, in Burko, L. M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, 441–457, (Institute of Physics, Bristol, 1998). For a related online version see: B. K. Berger, et al., “Numerical Study of Cosmological Singularities”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 26 Sep 1997, http://xxx.lanl.gov/abs/gr-gc/9709073. 3.2.1, 3.4.1, 3.4.2, 3.4.3
MATH
Google Scholar
Berger, B. K., Garfinkle, D., and Strasser, E., “New Algorithm for Mixmaster Dynamics”, Class. Quantum Grav., 14, L29–L36, (1996). For a related online version see: B. K. Berger, et al., “New Algorithm for Mixmaster Dynamics”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 30 Sep 1996, http://xxx.lanl.gov/abs/gr-gc/9609072. 1, 3.2.2, 5, 3.3.1, 3.3.2, 3.4.4
MathSciNet
MATH
Article
Google Scholar
Berger, B. K., Garfinkle, D., and Swamy, V., “Detection of Computer Generated Gravitational Waves in Numerical Cosmologies”, Gen. Relativ. Gravit., 27, 511–527, (1995). For a related online version see: B. K. Berger, et al., “Detection of Computer Generated Gravitational Waves in Numerical Cosmologies”, (May, 1994), [Online Los Alamos Archive Preprint]: cited on 27 May 1994, http://xxx.lanl.gov/abs/gr-gc/9405069. 3.4.2
ADS
MATH
Article
Google Scholar
Berger, B. K., Isenberg, J., Chruściel, P. T., and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N Y.), 260, 117–148, (1997). For a related online version see: B. K. Berger, et al., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, (February, 1997), [Online Los Alamos Archive Preprint]: cited on 3 Feb 1997, http://xxx.lanl.gov/abs/gr-gc/9702007. 3.4.1, 3.4.2
ADS
MATH
Article
Google Scholar
Berger, B. K., Isenberg, J., and Weaver, M., “Oscillatory Approach to the Singularity in Vacuum Spacetimes with T2 Isometry”, Phys. Rev. D, 62, 123501, (2000). For a related online version see: B. K. Berger, et al., “Oscillatory Approach to the Singularity in Vacuum Spacetimes with T2 Isometry”, (April, 2001), [Online Los Alamos Archive Preprint]: cited on 16 Apr 2001, http://xxx.lanl.gov/abs/gr-gc/0104048. 1, 3.2.2, 3.4.1, 3.4.2
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., and Moncrief, V., “Numerical Investigation of Cosmological Singularities”, Phys. Rev. D, 48, 4676–4687, (1993). For a related online version see: B. K. Berger, et al., “Numerical Investigation of Cosmological Singularities”, (July, 1993), [Online Los Alamos Archive Preprint]: cited on 22 Jul 93, http://xxx.lanl.gov/abs/gr-gc/9307032. 1, 3.2.1
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., and Moncrief, V., “Evidence for an Oscillatory Singularity in Generic U(1) Symmetric Cosmologies on T3 × R”, Phys. Rev. D, 58, 064023, (1998). For a related online version see: B. K. Berger, et al., “Evidence for an Oscillatory Singularity in Generic U(1) Symmetric Cosmologies on T3 × R”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 30 Apr 1998, http://xxx.lanl.gov/abs/gr-gc/9804085. 1, 3.2.2, 3.4.1, 3.4.4, 6
ADS
Article
Google Scholar
Berger, B. K., and Moncrief, V., “Numerical Evidence that the Singularity in Polarized U(1) Symmetric Cosmologies on T3 × R is Velocity Dominated”, Phys. Rev. D, 57, 7235–7240, (1998). For a related online version see: B. K. Berger, et al., “Numerical Evidence that the Singularity in Polarized U(1) Symmetric Cosmologies on T3 × R is Velocity Dominated”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 22 Jan 1998, http://xxx.lanl.gov/abs/gr-gc/9801078. 1, 3.4.3
ADS
MathSciNet
Article
Google Scholar
Berger, B. K., and Moncrief, V., “Signature for Local Mixmaster Dynamics in U(1) Symmetric Cosmologies”, Phys. Rev. D, 62, 123501, (2000). For a related online version see: B. K. Berger, et al., “Signature for Local Mixmaster Dynamics in U(1) Symmetric Cosmologies”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 20 Jun 2000, http://xxx.lanl.gov/abs/gr-gc/0006071. 3.4.1
ADS
MathSciNet
Article
Google Scholar
Bizoń, P., “How to Make a Tiny Black Hole?”, Acta Cosmologica, 22, 81, (1996). For a related online version see: P. Bizoń, “How to Make a Tiny Black Hole?”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 19 Jun 1996, http://xxx.lanl.gov/abs/gr-gc/960606C. 1
ADS
Google Scholar
Bizoń, P., and Chmaj, T., “Formation and Critical Collapse of Skyrmions”, Phys. Rev. D, 58, 041501, (1998). For a related online version see: P. Bizoń, et al., “Critical Collapse of Skyrmions”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 12 Jan 1998, http://xxx.lanl.gov/abs/gr-gc/9801012. 2.2.3
ADS
Article
Google Scholar
Bizoń, P., Chmaj, T., and Tabor, Z., “Dispersion and Collapse of Wave Maps”, Nonlinearity, 13, 1411–1423, (2000). For a related online version see: P. Bizoń, et al., “Dispersion and Collapse of Wave Maps”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 17 Dec 1999, http://xxx.lanl.gov/abs/math-ph/9912009. 2.2.4
ADS
MathSciNet
MATH
Article
Google Scholar
Bizoń, P., and Tabor, Z., “On Blowup for Yang Mills-Fields”, Phys. Rev. D, 64, 121701, (2001). For a related online version see: P. Bizoń, et al., “On Blowup for Yang-Mills Fields”, (May, 2001), [Online Los Alamos Archive Preprint]: cited on 16 May 2001, http://xxx.lanl.gov/abs/math-ph/0105016. 2.2.4
ADS
MathSciNet
Article
Google Scholar
Bonanno, A., Droz, S., Israel, W., and Morsink, S. M., “Structure of the Spherical Black Hole Interior”, Proc. R. Soc. London, Ser. A, 450, 553–567, (1995). For a related online version see: A. Bonanno, et al., “Structure of the Spherical Black Hole Interior”, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 18 Nov 1994, http://xxx.lanl.gov/abs/gr-gc/9411050. 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Brady, P. R., and Chambers, C. M., “Non-Linear Instability of Kerr-Type Cauchy Horizons”, Phys. Rev. D, 51, 4177–4186, (1995). For a related online version see: P. R. Brady, et al., “Non-Linear Instability of Kerr-Type Cauchy Horizons”, (January, 1995), [Online Los Alamos Archive Preprint]: cited on 21 Jan 1995, http://xxx.lanl.gov/abs/gr-qc/9501025. 2.3.2
ADS
MathSciNet
Article
Google Scholar
Brady, P. R., Chambers, C. M., and Gonçalves, S. M. C. V., “Phases of Massive Scalar Field Collapse”, Phys. Rev. D, 56, 6057–6061, (1997). For a related online version see: P. R. Brady, et al., “Phases of Massive Scalar Field Collapse”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 5 Sep 1997, http://xxx.lanl.gov/gr-gc/9709014. 2.2.3
ADS
Article
Google Scholar
Brady, P. R., Chambers, C. M., Krivan, W., and Laguna, P., “Telling Tails in the Presence of a Cosmological Constant”, Phys. Rev. D, 55, 7538–7545, (1997). For a related online version see: P. R. Brady, et al., “Telling Tails in the Presence of a Cosmological Constant”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 23 Nov 1996, http://xxx.lanl.gov/abs/gr-gc/9611056. 2.3.3
ADS
Article
Google Scholar
Brady, P. R., Droz, S., and Morsink, S. M., “Late-Time Singularity inside Nonspherical Black Holes”, Phys. Rev. D, 58, 084034, (1998). For a related online version see: P. R. Brady, et al., “The Late-Time Singularity inside Nonspherical Black Holes”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 5 May 1998, http://xxx.lanl.gov/abs/gr-gc/9805008. 2.3.2
ADS
MathSciNet
Article
Google Scholar
Brady, P. R., Moss, I. G., and Myers, R. C., “Cosmic Censorship: As Strong as Ever”, Phys. Rev. Lett., 80, 3432–3435, (1998). For a related online version see: P. R. Brady, et al., “Cosmic Censorship: As Strong as Ever”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 12 Jan 1998, http://xxx.lanl.gov/abs/gr-gc/9801032. 2.3.3
ADS
MathSciNet
MATH
Article
Google Scholar
Brady, P. R., and Smith, J. D., “Black Hole Singularities a Numerical Approach”, Phys. Rev. Lett., 75, 1256–1259, (1995). For a related online version see: P. R. Brady, et al., “Black Hole Singularities a Numerical Approach”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 28 Jun 1995, http://xxx.lanl.gov/abs/gr-gc/950607. 1, 2.3.2, 2.3.2, 2.3.3
ADS
MathSciNet
MATH
Article
Google Scholar
Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Mass Inflation and Chaotic Behavior Inside Hairy Black Holes”, Nucl. Phys. B, 524, 427–443, (1998). For a related online version see: P. Breitenlohner, et al., “Mass Inflation and Chaotic Behavior Inside Hairy Black Holes”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 18 Mar 1997, http://xxx.lanl.gov/abs/gr-gc/9703047. 2.3.2
ADS
MATH
Article
Google Scholar
Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Non-Abelian Black Holes: The Inside Story”, in Burko, L. M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, 172–193, (Institute of Physics, Bristol, 1998). For a related online version see: P. Breitenlohner, et al., “Non-Abelian Black Holes: The Inside Story”, (August, 1997), [Online Los Alamos Archive Preprint]: cited on 17 Aug 1997, http://xxx.lanl.gov/abs/gr-gc/9708036. 2.3.2
MATH
Google Scholar
Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Mass Inflation Inside Non-Abelian Black Holes”, in Piran, T., ed., Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, (World Scientific, Singapore, 1999). For a related online version see: P. Breltenlohner, et al., “Mass Inflation Inside Non-Abelian Black Holes”, (November, 1997), [Online Los Alamos Archive Preprint]: cited on 6 Nov 1997, http://xxx.lanl.gov/abs/gr-gc/9711024. 2.3.2
Google Scholar
Brill, D. R., “On the Positive Definite Mass of the Bondi-Weber-Wheeler Time-Symmetric Gravitational Waves”, Ann. Phys. (N. Y.), 7, 466–483, (1959). 2.1.3
ADS
MathSciNet
Article
Google Scholar
Browne, M. W., “A Bet on a Cosmic Scale, and a Concession Sort of”, The New York Times, (12 Feb 1997).
Google Scholar
Burd, A. B., Buric, N., and Ellis, G. F. R., “A Numerical Analysis of Chaotic Behavior in Bianchi IX Models”, Gen. Relativ. Gravit., 22, 349-363, (1990). 1, 3.3.1
ADS
MATH
Article
Google Scholar
Burko, L. M., “Structure of the Black Hole’s Cauchy Horizon Singularity”, Phys. Rev. Lett., 79, 4958–4961, (1997). For a related online version see: L. M. Burko, “Structure of the Black Hole’s Cauchy Horizon Singularity”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 26 Oct 1997, http://xxx.lanl.gov/abs/gr-gc/9710112. 1, 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Burko, L. M., “Homogeneous Spacelike Singularities Inside Spherical Black Holes”, in Burko, L. M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, (Institute of Physics, Bristol, 1998). For a related online version see: L. M. Burko, “Homogeneous Spacelike Singularities Inside Spherical Black Holes”, (November, 1997), [Online Los Alamos Archive Preprint]: cited on 5 Nov 1997, http://xxx.lanl.gov/abs/gr-gc/9711012. 4
Google Scholar
Burko, L. M., “The Singularity in Supercritical Collapse of a Spherical Scalar Field”, Phys. Rev. D, 58, 084013, (1998). For a related online version see: L. M. Burko, “The Singularity in Supercritical Collapse of a Spherical Scalar Field”, (March, 1998), [Online Los Alamos Archive Preprint]: cited on 22 Mar 1998, http://xxx.lanl.gov/abs/gr-qc/9803059. 2.3.2
ADS
MathSciNet
Article
Google Scholar
Burko, L. M., “Singularity Deep inside the Charged Black Hole Core”, Phys. Rev. D, 59, 024011, (1999). For a related online version see: L. M. Burko, “Singularity Deep inside the Charged Black Hole Core”, (July, 1999), [Online Los Alamos Archive Preprint]: cited on 27 Sep 1998, http://xxx.lanl.gov/abs/gr-gc/9809073. 4
ADS
MathSciNet
Article
Google Scholar
Burko, L. M., and Ori, A., “Late-Time Evolution of Nonlinear Gravitational Collapse”, Phys. Rev. D, 56, 7820–7832, (1997). For a related online version see: L. M. Burko, et al., “Late-Time Evolution of Nonlinear Gravitational Collapse”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 21 Sep 1997, http://xxx.lanl.gov/abs/gr-gc/9703067. 2.3.3
ADS
Article
Google Scholar
Burko, L. M., and Ori, A., “Analytic Study of the Null Singularity inside Spherical Charged Black Holes”, Phys. Rev. D, 57, 7084–7088, (1998). For a related online version see: L. M. Burko, et al., “Analytic Study of the Null Singularity inside Spherical Charged Black Holes”, (November, 1997), [Online Los Alamos Archive Preprint]: cited on 10 Nov 1997, http://xxx.lanl.gov/abs/gr-gc/9711032. 2.3.2
ADS
MathSciNet
Article
Google Scholar
Carretero-Gonzalez, R., Nunuz-Yepez, H. N., and Salas-Brito, A. L., “Evidence of Chaotic Behavior in Jordan-Brans-Dicke Cosmology”, Phys. Lett. A, 188, 48, (1994).
ADS
Article
Google Scholar
Chambers, C. M., “The Cauchy Horizon in Black Hole-de Sitter Spacetimes”, in Burko, L. M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, (Institute of Physics, Bristol, 1998). For a related online version see: C. M. Chambers, “The Cauchy Horizon in Black Hole-de Sitter Spacetimes”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 11 Sep 1997, http://xxx.lanl.gov/abs/gr-gc/9709025. 2.3.3
Google Scholar
Chambers, C. M., Brady, P. R., and Goncalves, S. M. C. V., “Phases of Massive Scalar Field Collapse”, in Piran, T., ed., Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, (World Scientific, Singapore, 1999). For a related online version see: C. M. Chambers, et al., “Phases of Massive Scalar Field Collapse”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 2 Oct 1997, http://xxx.lanl.gov/gr-gc/9710014. 2.2.3
Google Scholar
Chambers, C. M., Brady, P. R., Krivan, W., and Laguna, P., “Some Cosmological Tails of Collapse”, in Piran, T., ed., Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, (World Scientific, Singapore, 1999). For a related online version see: C. M. Chambers, et al., “Some Cosmological Tails of Collapse”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 2 Oct 1997, http://xxx.lanl.gov/abs/gr-gc/9710015. 2.3.3
Google Scholar
Chandrasekhar, S., and Hartle, J. B., “On Crossing the Cauchy Horizon of a Reissner-Nordström Black Hole”, Proc. R. Soc. London, Ser. A, 384, 301–315,(1982). 1
ADS
MATH
Article
Google Scholar
Chernoff, D. F., and Barrow, J. D., “Chaos in the Mixmaster Universe”, Phys. Rev. Lett., 50, 134–137, (1983). 3.3.1
ADS
MathSciNet
Article
Google Scholar
Chiba, T., “Apparent Horizon Formation and Hoop Conjecture in Nonaxisymmetric Spaces”, Phys. Rev. D, 60, 044003, (1999). For a related online version see: T. Chiba, “Apparent Horizon Formation and Hoop Conjecture in Non-axisymmetric Spaces”, (April, 1999), [Online Los Alamos Archive Preprint]: cited on 4 Jul 99, http://xxx.lanl.gov/abs/gr-qc/9904054. 2.1.1, 2.1.4
ADS
MathSciNet
Article
Google Scholar
Chiba, T., Nakamura, T., Nakao, K., and Sasaki, M., “Hoop Conjecture for Apparent Horizon Formation”, Class. Quantum Grav., 11, 431–441, (1994). 2.1.2, 2.1.4
ADS
MathSciNet
MATH
Article
Google Scholar
Choptuik, M. W., “Animations of SU(2) EYM Collapse”, (1999), [Online HTML Document]: cited on 20 June 2001, http://laplace.physics.ubc.ca/People/matt/Movies/YM/index.html. 3
Choptuik, M. W., “Universality and Scaling in Gravitational Collapse of a Massive Scalar Field”, Phys. Rev. Lett., 70, 9–12, (1993). 1, 2.2.1, 2.3.3
ADS
Article
Google Scholar
Choptuik, M. W., Chmaj, T., and Bizoń, P., “Critical Behavior in Gravitational Collapse of a Yang-Mills Field”, Phys. Rev. Lett., 77, 424–427, (1996). For a related online version see: M. W. Choptuik, et al., “Critical Behavior in Gravitational Collapse of a Yang-Mills Field”, (March, 1996), [Online Los Alamos Archive Preprint]: cited on 27 Mar 96, http://xxx.lanl.gov/abs/gr-gc/9603051. 2.2.3
ADS
Article
Google Scholar
Christodoulou, D., “A Mathematical Theory of Gravitational Collapse”, Commun. Math. Phys., 109, 613–647, (1987). 2.2.1
ADS
MathSciNet
MATH
Article
Google Scholar
Christodoulou, D., “The Instability of Naked Singularities in the Gravitational Collapse of a Scalar Field”, Ann. Math., 149, 183–217, (1999). 1
MathSciNet
MATH
Article
Google Scholar
Chruściel, P. T., “On Space-Times with U(1) × U(1) Symmetrical Compact Cauchy Surfaces”, Ann. Phys. (N. Y.), 202, 100–150, (1990). 3.4.1
ADS
MATH
Article
Google Scholar
Chrusciel, P. T., Isenberg, J., and Moncrief, V., “Strong Cosmic Censorship in Polarised Gowdy Spacetimes”, Ann. Phys. (N. Y.), 7, 1671–1680, (1990). 3.4.2
MathSciNet
MATH
Google Scholar
Coley, A., “No Chaos in Brane-World Cosmology”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 12 Oct 2001, http://xxx.lanl.gov/abs/hep-th/0110117. 3.3.3
Cornish, N. J., and Levin, J., “The Mixmaster Universe: A Chaotic Farey Tale”, Phys. Rev. D, 55, 7489–7510, (1997). For a related online version see: N. J. Cornish, et al., “The Mixmaster Universe: A Chaotic Farey Tale”, (December, 1996), [Online Los Alamos Archive Preprint]: cited on 30 Dec 1996, http://xxx.lanl.gov/abs/gr-gc/9612066. 3.3.1
ADS
Article
Google Scholar
Cornish, N. J., and Levin, J., “The Mixmaster Universe is Chaotic”, Phys. Rev. Lett., 78, 998–1001, (1997). For a related online version see: N. J. Cornish, et al., “The Mixmaster Universe is Chaotic”, (May, 1996), [Online Los Alamos Archive Preprint]: cited on 6 Nov 1996, http://xxx.lanl.gov/abs/gr-gc/9605029. 1, 3.1, 3.3.1, 3.3.1
ADS
Article
Google Scholar
Cotsakis, S., Demaret, J., DeRop, Y., and Querella, L., “Mixmaster Universe in Fourth-Order Gravity Theories”, Phys. Rev. D, 48, 4595–4603, (1993). 3.3.3
ADS
Article
Google Scholar
Damour, T., and Henneaux, M., “Chaos in Superstring Cosmology”, Phys. Rev. Lett., 85, 920–923, (2000). For a related online version see: T. Damour, et al., “Chaos in Superstring Cosmology”, (March, 2000), [Online Los Alamos Archive Preprint]: cited on 16 Mar 2000, http://xxx.lanl.gov/abs/hep-th/0003139. 3.4.4
ADS
MathSciNet
MATH
Article
Google Scholar
Damour, T., and Henneaux, M., “Oscillatory Behaviour in Homogeneous String Cosmology Models”, Phys. Lett. B, 488, 108–116, (2000). For a related online version see: T. Damour, et al., “Oscillatory Behaviour in Homogeneous String Cosmology Models”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 21 Jun 2000, http://xxx.lanl.gov/abs/hep-th/0006171. 3.3.3
ADS
MathSciNet
MATH
Article
Google Scholar
Deruelle, N., and Langlois, D., “Long Wavelength Iteration of Einstein’s Equations near a Spacetime Singularity”, Phys. Rev. D, 52, 2007–2019, (1995). For a related online version see: N. Deruelle, et al., “Long Wave length Iteration of Einstein’s Equations near a Spacetime Singularity”, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 15 Nov 1994, http://xxx.lanl.gov/abs/gr-gc/94110. 3.4.4
ADS
MathSciNet
Article
Google Scholar
Donets, E. E., Gal’tsov, D. V., and Zotov, M. Yu., “Internal Structure of Einstein-Yang-Mills Black Holes”, Phys. Rev. D, 56, 3459–3465, (1997). For a related online version see: E. E. Donets, et al., “Internal Structure of Einstein-Yang-Mills Black Holes”, (December, 1996), [Online Los Alamos Archive Preprint]: cited on 23 Apr 1997, http://xxx.lanl.gov/abs/gr-gc/9612067. 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Droz, S., “Numerical Investigation of Black Hole Interiors”, Helv. Phys. Acta, 69, 257–260, (1996). For a related online version see: S. Droz, “Numerical Investigation of Black Hole Interiors”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 14 Aug 1996, http://xxx.lanl.gov/abs/gr-gc/9608034. 1, 2.3.2
ADS
MATH
Google Scholar
Eardley, D., Isenberg, J., Marsden, J., and Moncrief, V., “Homothetic and Conformal Symmetries of Solutions to Einstein’s Equations”, Commun. Math. Phys., 106, 137–158, (1986). 2.2.2
ADS
MathSciNet
MATH
Article
Google Scholar
Eardley, D., Liang, E., and Sachs, R., “Velocity-Dominated Singularities in Irrotational Dust Cosmologies”, J. Math. Phys., 13, 99–107, (1972). 1, 3.1
ADS
Article
Google Scholar
Eardley, D. M., Hirschmann, E. W., and Horne, J. H., “S-Duality at the Black Hole Threshold in Gravitational Collapse”, Phys. Rev. D, 52, 5397–5401, (1995). For a related online version see: D. M. Eardley, et al., “S-Duality at the Black Hole Threshold in Gravitational Collapse”, (May, 1995), [Online Los Alamos Archive Preprint]: cited on 22 May 1995, http://xxx.lanl.gov/abs/gr-gc/9505041. 2.2.3
ADS
MathSciNet
Article
Google Scholar
Echeverria, F., “Gravitational Collapse of an Infinite, Cylindrical Dust Shell”, Phys. Rev. D, 47, 2271–2282, (1993). 2.1.4
ADS
Article
Google Scholar
Ellis, G. F. R., and Schmidt, B. G., “Singular Space-Times”, Gen. Relativ. Gravit., 8, 915–953, (1977). 1
ADS
MathSciNet
MATH
Article
Google Scholar
Evans, C. R., and Coleman, J. S., “Critical Phenomena and Self-Similarity in the Gravitational Collapse of Radiation Fluid”, Phys. Rev. Lett., 72, 1782–1785, (1994). For a related online version see: C. R. Evans, et al., “Observation of Critical Phenomena and Self-Similarity in the Gravitational Collapse of Radiation Fluid”, (February, 1994), [Online Los Alamos Archive Preprint]: cited on 22 Feb 1994, http://xxx.lanl.gov/abs/gr-gc/9402041. 2.2.2
ADS
Article
Google Scholar
Ferraz, K., Francisco, G., and Matsas, G. E. A., “Chaotic and Nonchaotic Behavior in the Mixmaster Dynamics”, Phys. Lett. A, 156, 407, (1991).
ADS
Article
Google Scholar
Finn, L. S., “A Numerical Approach to Binary Black Hole Coalescence”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, 147–166, (World Scientific, Singapore, 1997). For a related online version see: L. S. Finn, “A Numerical Approach to Binary Black Hole Coalescence”, (March, 1996), [Online Los Alamos Archive Preprint]: cited on 5 Mar 1996, http://xxx.lanl.gov/abs/gr-gc/9603004. 1, 3.4.3
Google Scholar
Fleck, J. A., Morris, J. R., and Felt, M. D., “Time-Dependent Propagation of High Energy Laser Beams through the Atmosphere”, Appl. Phys., 10, 129–160, (1976).
ADS
Article
Google Scholar
Francisco, G., and Matsas, G. E. A., “Qualitative and Numerical Study of Bianchi IX Models”, Gen. Relativ. Gravit., 20, 1047–1054, (1988). 1, 3.3.1
ADS
MathSciNet
Article
Google Scholar
Friedrich, H., “On Static and Radiative Spacetimes”, Commun. Math. Phys., 119, 51–73, (1988). 2.3.3
ADS
MathSciNet
MATH
Article
Google Scholar
Gal’tsov, D. V., and Donets, E. E., “Power-Law Mass Inflation in Einstein-Yang-Mills-Higgs Black Holes”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 22 Jun 1997, http://xxx.lanl.gov/abs/gr-gc/9706067. 2.3.2
Gal’tsov, D. V., Donets, E. E., and Zotov, M. Yu., “Singularities Inside Non-Abelian Black Holes”, JETP Lett., 65, 895–901, (1997). For a related online version see: D. V. Gal’tsov, et al., “Singularities Inside Non-Abelian Black Holes”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 20 Jun 1997, http://xxx.lanl.gov/abs/gr-gc/9706063. 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Gal’tsov, D. V., Donets, E. E., and Zotov, M. Yu., “Singularities inside Hairy Black Holes”, in Piran, T., ed., Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, (World Scientific, Singapore, 1999). For a related online version see: D. V. Gal’tsov, et al., “Singularities inside Hairy Black Holes”, (December, 1997), [Online Los Alamos Archive Preprint]: cited on 1 Dec 1997, http://xxx.lanl.gov/abs/gr-gc/9712003. 2.3.2
Google Scholar
Garfinkle, D., “Harmonic Coordinate Method for Simulating Generic Singularities”, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 1 Oct 2001, http://xxx.lanl.gov/abs/gr-gc/0110013. 3.4.4
Garfinkle, D., “Asymptotically Flat Space-Times Have No Conformal Killing Fields”, J. Math. Phys., 28, 28–32, (1987). 2.2.2
ADS
MathSciNet
MATH
Article
Google Scholar
Garfinkle, D., “Choptuik Scaling in Null Coordinates”, Phys. Rev. D, 51, 5558–5561, (1995). For a related online version see: D. Garfinkle, “Choptuik Scaling in Null Coordinates”, (December, 1994), [Online Los Alamos Archive Preprint]: cited on 1 Dec 1994, http://xxx.lanl.gov/abs/gr-gc/9412008. 2.2.1
ADS
Article
Google Scholar
Garfinkle, D., “Choptuik Scaling and the Scale Invariance of Einstein’s Equation”, Phys. Rev. D, 56, 3169–3173, (1997). For a related online version see: D. Garfinkle, “Choptuik Scaling and the Scale Invariance of Einstein’s Equation”, (December, 1996), [Online Los Alamos Archive Preprint]: cited on 31 Jul 1997, http://xxx.lanl.gov/abs/gr-qc/9612015. 2.2.4
ADS
MathSciNet
Article
Google Scholar
Garfinkle, D., “Numerical Simulations of Gowdy Spacetimes on S2 × S1 × R”, Phys. Rev. D, 60, 104010, (1999). For a related online version see: D. Garfinkle, “Numerical Simulations of Gowdy Spacetimes on S2 × S1 × R”, (June, 1999), [Online Los Alamos Archive Preprint]: cited on 4 Jun 1999, http://xxx.lanl.gov/abs/gr-gc/9906019. 2.3.2, 3.2.2, 3.4.2
ADS
MathSciNet
Article
Google Scholar
Garfinkle, D., “Exact Solution for 2+1-Dimensional Critical Collapse”, Phys. Rev. D, 63, 044007, (2001). For a related online version see: D. Garfinkle, “An Exact Solution for 2+1 Dimensional Critical Collapse”, (August, 2000), [Online Los Alamos Archive Preprint]: cited on 12 Nov 2000, http://xxx.lanl.gov/abs/gr-gc/0008023. 2.2.4
ADS
Article
Google Scholar
Garfinkle, D., and Duncan, G. C., “Scaling of Curvature in Sub-Critical Gravitational Collapse”, Phys. Rev. D, 58, 064024, (1998). For a related online version see: D. Garfinkle, et al., “Scaling of Curvature in Sub-Critical Gravitational Collapse”, (February, 1998), [Online Los Alamos Archive Preprint]: cited on 24 Feb 1998, http://xxx.lanl.gov/abs/gr-gc/9802061. 2.2.3
ADS
Article
Google Scholar
Garfinkle, D., and Duncan, G. C., “Numerical Evolution of Brill Waves”, Phys. Rev. D, 63, 044011, (2001). For a related online version see: D. Garfinkle, et al., “Numerical Evolution of Brill Waves”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 20 Oct 2000, http://xxx.lanl.gov/abs/gr-qc/0006073. 2.1.3
ADS
Article
Google Scholar
Garfinkle, D., and Gundlach, C., “Symmetry-Seeking Spacetime Coordinates”, Class. Quantum Grav., 16, 4111–4123, (1999). For a related online version see: D. Garfinkle, et al., “Symmetry-Seeking Spacetime Coordinates”, (August, 1999), [Online Los Alamos Archive Preprint]: cited on 28 Oct 1999, http://xxx.lanl.gov/abs/gr-gc/9908016. 2.2.4
ADS
MathSciNet
MATH
Article
Google Scholar
Garfinkle, D., and Meyer, K., “Scale Invariance and Critical Gravitational Collapse”, Phys. Rev. D, 59, 0640003, (1999). For a related online version see: D. Garfinkle, et al., “Scale Invariance and Critical Gravitational Collapse”, (June, 1998), [Online Los Alamos Archive Preprint]: cited on 12 Aug 1998, http://xxx.lanl.gov/abs/gr-gc/9806052. 2.2.4
Google Scholar
Gentle, A. P., and Miller, W. A., “A Fully 3 + 1-D Regge Calculus Model of the Kasner Cosmology”, Class. Quantum Grav., 15, 389–405, (1998). For a related online version see: A. P. Gentle, et al., “A Fully 3 + 1-D Regge Calculus Model of the Kasner Cosmology”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 12 Jun 1997, http://xxx.lanl.gov/abs/gr-gc/9706034. 3.3.3
ADS
MathSciNet
MATH
Article
Google Scholar
Gnedin, M. L., and Gnedin, N. Y., “Destruction of the Cauchy Horizon in the Reissner-Nordström Black Hole”, Class. Quantum Grav., 10, 1083-1102, (1993). 2.3.2
ADS
Article
Google Scholar
Goldwirth, D. S., and Piran, T., “Gravitational Collapse of Massless Scalar Field and Cosmic Censorship”, Phys. Rev. D, 36, 3575–3581, (1987). 2.2.1, 2.3.2
ADS
MathSciNet
Article
Google Scholar
Gonçalves, S. M. C. V., and Moss, I. G., “Black Hole Formation from Massive Scalar Fields”, Class. Quantum Grav., 14, 2607–2615, (1997). For a related online version see: S. M. C. V. Gonçalves, et al., “Black Hole Formation from Massive Scalar Fields”, (February, 1997), [Online Los Alamos Archive Preprint]: cited on 27 Feb 1997, http://xxx.lanl.gov/abs/gr-gc/9702059. 2.2.3
ADS
MathSciNet
MATH
Article
Google Scholar
Gowdy, R. H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826, (1971).
ADS
Article
Google Scholar
Grubišić, B., “Velocity Dominance near a Crushing Singularity”, in Brown, J. D., Chu, M. T., Ellison, D. C., and Plemmons, R. J., eds., Proceedings of the Cornelius Lanczos Symposium, (SIAM, Philadelphia, 1994). For a related online version see: B. Grubišić, “Velocity Dominance near a Crushing Singularity”, (April, 1994), [Online Los Alamos Archive Preprint]: cited on 27 Apr 1994, http://xxx.lanl.gov/abs/gr-qc/9404056. 3.4.1
Google Scholar
Grubišić, B., and Moncrief, V., “Asymptotic Behavior of the T3 × R Gowdy Space-times”, Phys. Rev. D, 47, 2371–2382, (1993). For a related online version see: B. Grubisic, et al., “Asymptotic Behavior of the T3 × R Gowdy Space-times”, (September, 1992), [Online Los Alamos Archive Preprint]: cited on 15 Sep 1994, http://xxx.lanl.gov/abs/gr-gc/9209006. 1, 3.4.1, 3.4.2, 3.4.2
ADS
MathSciNet
Article
Google Scholar
Grubišić, B., and Moncrief, V., “Mixmaster Spacetime, Geroch’s Transformation, and Constants of Motion”, Phys. Rev. D, 49, 2792–2800, (1994). For a related online version see: B. Grubisic, et al., “Mixmaster Spacetime, Geroch’s Transformation, and Constants of Motion”, (September, 1993), [Online Los Alamos Archive Preprint]: cited on 9 Sep 1993, http://xxx.lanl.gov/abs/gr-gc/9309007. 3.4.3
ADS
MathSciNet
Article
Google Scholar
Gundlach, C., “Critical Phenomena in Gravitational Collapse”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 12 Jun 1996, http://xxx.lanl.gov/ps/gr-qc/9606023. Submitted to Banach Centre Proceedings. 1, 2.2.1
Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2, 1999-4gundlach, (December, 1999), [Online Journal Article]: cited on 28 May 2001, http://www.livingreviews.org/Articles/Volume2/1999-4gundlach. 1, 2.2.1, 2.2.2
Gundlach, C., “The Choptuik Spacetime as an Eigenvalue Problem”, Phys. Rev. Lett., 75, 3214–3217, (1995). For a related online version see: C. Gundlach, “The Choptuik Spacetime as an Eigenvalue Problem”, (July, 1995), [Online Los Alamos Archive Preprint]: cited on 13 Sep 1995, http://xxx.lanl.gov/abs/gr-gc/9507054. 2.2.2
ADS
MathSciNet
MATH
Article
Google Scholar
Gundlach, C., “Echoing and Scaling in Einstein-Yang-Mills Critical Collapse”, Phys. Rev. D, 55, 6002–6013, (1997). For a related online version see: C. Gundlach, “Echoing and Scaling in Einstein-Yang-Mills Critical Collapse”, (October, 1996), [Online Los Alamos Archive Preprint]: cited on 4 Nov 1996, http://xxx.lanl.gov/abs/gr-gc/9610069. 2.2.3
ADS
MathSciNet
Article
Google Scholar
Gundlach, C., “Understanding Critical Collapse of a Scalar Field”, Phys. Rev. D, 55, 695–713, (1997). For a related online version see: C. Gundlach, “Understanding Critical Collapse of a Scalar Field”, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 8 Apr 1996, http://xxx.lanl.gov/abs/gr-gc/9604019. 2.2.2, 2.2.3
ADS
Article
Google Scholar
Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). For a related online version see: C. Gundlach, “Critical Phenomena in Gravitational Collapse”, (December, 1997), [Online Los Alamos Archive Preprint]: cited on 27 Jan 1998, http://xxx.lanl.gov/abs/gr-gc/9712084. 1, 2.2.1
MathSciNet
MATH
Article
Google Scholar
Gundlach, C., “Nonspherical Perturbations of Critical Collapse and Cosmic Censorship”, Phys. Rev. D, 57, 7075–7079, (1998). For a related online version see: C. Gundlach, “Nonspherical Perturbations of Critical Collapse and Cosmic Censorship”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 12 Oct 1997, http://xxx.lanl.gov/abs/gr-gc/9710066. 2.2.4
ADS
MathSciNet
Article
Google Scholar
Gundlach, C., and Martin-Garcia, J. M., “Charge Scaling and Universality in Critical Collapse”, Phys. Rev. D, 54, 7353–7360, (1996). For a related online version see: C. Gundlach, et al., “Charge Scaling and Universality in Critical Collapse”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 17 Sep 1996, http://xxx.lanl.gov/abs/gr-gc/9606072. 2.2.3
ADS
Article
Google Scholar
Halpern, P., “Chaos in the Long-Term Behavior of Some Blanchi-type VIII Models”, Gen. Relativ. Gravit., 19, 73–94, (1987). 3.1
ADS
MATH
Article
Google Scholar
Hamadé, R. S., Horne, J. H., and Stewart, J. M., “Continuous Self-Similarity and S-Duality”, Class. Quantum Grav., 13, 2241–2254, (1996). For a related online version see: R. S. Hamade, et al., “Continuous Self-Similarity and S-Duality”, (November, 1995), [Online Los Alamos Archive Preprint]: cited on 7 Nov 1995, http://xxx.lanl.gov/abs/gr-gc/9511024. 2.2.3
ADS
MathSciNet
MATH
Google Scholar
Hamadé, R. S., and Stewart, J. M., “The Spherically Symmetric Collapse of a Massive Scalar Field”, Class. Quantum Grav., 13, 497–512, (1996). For a related online version see: R. S. Hamadé, et al., “The Spherically Symmetric Collapse of a Massive Scalar Field”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 22 Jun 1995, http://xxx.lanl.gov/abs/gr-gc/9506044. 1, 2.2.1, 2.2.1
ADS
MATH
Google Scholar
Hara, T., Koike, T., and Adachi, S., “Renormalization Group and Critical Behavior in Gravitational Collapse”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 28 May 1997, http://xxx.lanl.gov/abs/gr-gc/9607010. 2.2.2, 2.2.4
Harada, T., Iguchi, H., and Nakao, K., “Naked Singularity Explosion”, Phys. Rev. D, 61, 101502, (2000). For a related online version see: T. Harada, et al., “Naked Singularity Explosion”, (March, 2000), [Online Los Alamos Archive Preprint]: cited on 9 Mar 2000, http://xxx.lanl.gov/abs/gr-qc/0003036. 2.1.4
ADS
Article
Google Scholar
Harada, T., Iguchi, H., and Nakao, K., “Power, Energy, and Spectrum of a Naked Singularity Explosion”, Phys. Rev. D, 62, 084037, (2000). For a related online version see: T. Harada, et al., “Power, Energy, and Spectrum of a Naked Singularity Explosion”, (May, 2000), [Online Los Alamos Archive Preprint]: cited on 12 Jul 2000, http://xxx.lanl.gov/abs/gr-gc/0005114. 2.1.4
ADS
Article
Google Scholar
Hawking, S. W., “The Occurrence of Singularities in Cosmology. III. Causality and Singularities”, Proc. R. Soc. London, Ser. A, 300, 182-201, (1967). 1
ADS
MATH
Google Scholar
Hawking, S. W., and Ellis, G. F. R., The Large Scale Structure of Space-Time, (Cambridge University Press, Cambridge, 1973). 1
MATH
Book
Google Scholar
Hawking, S. W., and Penrose, R., “The Singularities of Gravitational Collapse and Cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548, (1970). 1
ADS
MathSciNet
MATH
Article
Google Scholar
Hern, S. D., Numerical Relativity and Inhomogeneous Cosmologies, PhD Thesis, (Cambridge University, Cambridge, 2000). For a related online version see: S. D. Hern, “Numerical Relativity and Inhomogeneous Cosmologies”, (April, 2000), [Online Los Alamos Archive Preprint]: cited on 12 Apr 2000, http://xxx.lanl.gov/gr-qc/0004036. 3.2.2
Google Scholar
Hern, S. J., and Stewart, J. M., “The Gowdy T3 Cosmologies Revisited”, Class. Quantum Grav., 15, 1581–1593, (1998). For a related online version see: S. J. Hern, et al., “The Gowdy T3 Cosmologies Revisited”, (August, 1997), [Online Los Alamos Archive Preprint]: cited on 5 May 1998, http://xxx.lanl.gov/gr-gc/9708038. 3.2.2, 3.4.2
ADS
MATH
Article
Google Scholar
Hirschmann, E. W., and Eardley, D. M., “Critical Exponents and Stability at the Black Hole Threshold for a Complex Scalar Field”, Phys. Rev. D, 52, 5850–5856, (1995). For a related online version see: E. W. Hirschmann, et al., “Critical Exponents and Stability at the Black Hole Threshold for a Complex Scalar Field”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 21 Aug 1995, http://xxx.lanl.gov/abs/gr-qc/9506078. 2.2.2
ADS
Article
Google Scholar
Hirschmann, E. W., and Eardley, D. M., “Universal Scaling and Echoing in Gravitational Collapse of a Complex Scalar Field”, Phys. Rev. D, 51, 4198–4207, (1995). For a related online version see: E. W. Hirschmann, et al., “Universal Scaling and Echoing in Gravitational Collapse of a Complex Scalar Field”, (December, 1994), [Online Los Alamos Archive Preprint]: cited on 21 Dec 1994, http://xxx.lanl.gov/abs/gr-qc/9412066. 2.2.1, 2.2.2
ADS
Article
Google Scholar
Hirschmann, E. W., and Eardley, D. M., “Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field”, Phys. Rev. D, 56, 4696–4705, (1997). For a related online version see: E. W. Hirschmann, et al., “Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field”, (November, 1995), [Online Los Alamos Archive Preprint]: cited on 17 Nov 1995, http://xxx.lanl.gov/abs/gr-qc/9511052. 2.2.2, 2.2.3, 2.2.4
ADS
Article
Google Scholar
Hobill, D. W., Bernstein, D., Welge, M., and Simkins, D., “The Mixmaster Cosmology as a Dynamical System”, Class. Quantum Grav., 8, 1155–1171, (1991). 1, 3.3.1, 3.4.4
ADS
MathSciNet
MATH
Article
Google Scholar
Hobill, D. W., Burd, A., and Coley, A., eds., Deterministic Chaos in General Relativity, (Plenum, New York, 1994).
Google Scholar
Hobill, D. W., and Webster, P. S., “Trapped Surface Structure in Brill Wave Evolution”, Talk presented at GR16 and private communication. 2.1.3
Hod, S., “Radiative Tail of Realistic Rotating Gravitational Collapse”, Phys. Rev. Lett., 84, 10–13, (2000). For a related online version see: S. Hod, “Radiative Tail of Realistic Rotating Gravitational Collapse”, (July, 1999), [Online Los Alamos Archive Preprint]: cited on 2 Jan 2000, http://xxx.lanl.gov/abs/gr-gc/9907096. 2.3.3
ADS
Article
Google Scholar
Hod, S., and Piran, T., “Critical Behavior and Universality in Gravitational Collapse of a Charged Scalar Field”, Phys. Rev. D, 55, 3485–3496, (1997). For a related online version see: S. Hod, et al., “Critical Behaviour and Universality in Gravitational Collapse of a Charged Scalar Field”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 31 Jul 1996, http://xxx.lanl.gov/abs/gr-gc/9606093. 2.2.3
ADS
Article
Google Scholar
Hod, S., and Piran, T., “Fine-Structure of Choptuik’s Mass-Scaling Relation”, Phys. Rev. D, 55, 440–442, (1997). For a related online version see: S. Hod, et al., “Fine-Structure of Choptuik’s Mass-Scaling Relation”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 4 Jul 1996, http://xxx.lanl.gov/abs/gr-gc/9606087. 2.2.3
ADS
Article
Google Scholar
Hod, S., and Piran, T., “The Inner Structure of Black Holes”, Gen. Relativ. Gravit., 30, 1555–1562, (1998). For a related online version see: S. Hod, et al., “The Inner Structure of Black Holes”, (February, 1999), [Online Los Alamos Archive Preprint]: cited on 2 Feb 1999, http://xxx.lanl.gov/abs/gr-gc/9902008. 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Hod, S., and Piran, T., “Mass Inflation in Dynamical Gravitational Collapse of a Charged Scalar Field”, Phys. Rev. Lett., 81, 1554–1557, (1998). For a related online version see: S. Hod, et al., “Mass-Inflation in Dynamical Gravitational Collapse of a Charged Scalar-Field”, (March, 1998), [Online Los Alamos Archive Preprint]: cited on 1 Mar 1998, http://xxx.lanl.gov/abs/gr-gc/9803004. 2.3.2
ADS
MATH
Article
Google Scholar
Hübner, P., “How to Avoid Artificial Boundaries in the Numerical Calculation of Black Hole Spacetimes”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 8 Mar 1999, http://xxx.lanl.gov/abs/gr-gc/9804065. 2.3.3
Hübner, P., “A Method for Calculating the Structure of (Singular) Spacetimes in the Large”, Phys. Rev. D, 53, 701–721, (1996). For a related online version see: P. Hübner, “A Method for Calculating the Structure of (Singular) Spacetimes in the Large”, (September, 1994), [Online Los Alamos Archive Preprint]: cited on 14 Sep 1994, http://xxx.lanl.gov/abs/gr-gc/940902. 2.3.3
ADS
MathSciNet
Article
Google Scholar
Hübner, P., “Numerical Approach to the Global Structure of SpaceTimes”, Helv. Phys. Acta, 69, 316–320, (1996). 2.3.3
MATH
Google Scholar
Husa, S., Lechner, C., Pürrer, M., Thornburg, J., and Aichelburg, P. C., “Type II Critical Collapse of a Self-Gravitating Nonlinear σ Model”, Phys. Rev. D, 62, 104007, (2000). For a related online version see: S. Husa, et al., “Type II Critical Collapse of a Self-Gravitating Nonlinear σ Model”, (February, 2000), [Online Los Alamos Archive Preprint]: cited on 14 Sep 2000, http://xxx.lanl.gov/abs/gr-gc/0002067. 2.2.4
ADS
Article
Google Scholar
Iguchi, H., and Harada, T., “Physical Aspects of Naked Singularity Explosion: How Does a Naked Singularity Explode?”, Class. Quantum Grav., 18, 3681–3700, (2001). For a related online version see: H. Iguchi, et al., “Physical Aspects of Naked Singularity Explosion — How Does a Naked Singularity Explode? —”, (July, 2001), [Online Los Alamos Archive Preprint]: cited on 31 Jul 2001, http://xxx.lanl.gov/abs/gr-qc/0107099. 2.1.4
ADS
MathSciNet
MATH
Article
Google Scholar
Iguchi, H., Nakao, K., and Harada, T., “Gravitational Waves around a Naked Singularity: Odd-Parity Perturbation of Lemaitre-Tolman-Bondi Space-Time”, Phys. Rev. D, 57, 7262–7273, (1998). For a related online version see: H. Iguchi, et al., “Gravitational Waves around a Naked Singularity — Odd-Parity Perturbation of Lemaitre-Tolman-Bondi Space-Time —”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 6 Apr 1998, http://xxx.lanl.gov/abs/gr-gc/9804015. 2.1.4
ADS
MathSciNet
Article
Google Scholar
Iguchi, H., Nakao, K., and Harada, T., “Gravitational Waves around a Naked Singularity. II — Even-Parity Perturbation —”, Prog. Theor. Phys., 103, 53–72, (2000). For a related online version see: H. Iguchi, et al., “Gravitational Waves around a Naked Singularity. II — Even-Parity Perturbation —”, (April, 1999), [Online Los Alamos Archive Preprint]: cited on 4 Feb 2000, http://xxx.lanl.gov/abs/gr-gc/9911063. 2.1.4
ADS
Article
Google Scholar
Iguchi, O., Hosoya, A., and Koike, T., “Renormalization Group Approach to the Einstein Equation in Cosmology”, Phys. Rev. D, 57, 3340–3350, (1998). For a related online version see: O. Iguchi, et al., “Renormalization Group Approach to Einstein Equation in Cosmology”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 16 Sep 1997, http://xxx.lanl.gov/abs/gr-gc/9709042. 2.2.2
ADS
MathSciNet
Article
Google Scholar
Isenberg, J., and Kichenassamy, S., “Asymptotic Behavior in Polarized T2-Symmetric Vacuum Spacetimes”, J. Math. Phys., 40, 340–352, (1999). 1, 3.4.2
ADS
MathSciNet
MATH
Article
Google Scholar
Isenberg, J., and Moncrief, V., “Asymptotic Behavior in Polarized U(1)-Symmetric Vacuum Spacetimes”, Unpublished. 3.4.3
Isenberg, J. A., and Moncrief, V., “Asymptotic Behavior of the Gravitational Field and the Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N. Y.), 199, 84–122, (1990). 1, 3.1, 3.4.2
ADS
MathSciNet
MATH
Article
Google Scholar
Israel, W., “The Formation of Black Holes in Nonspherical Collapse and Cosmic Censorship”, Can. J. Phys., 64, 120–127, (1986). 2.1.1
ADS
MathSciNet
MATH
Article
Google Scholar
Israel, W., “Must Nonspherical Collapse Produce Black Holes? A Gravitational Confinement Theorem”, Phys. Rev. Lett., 56, 789–791, (1986). 2.1.1
ADS
MathSciNet
Article
Google Scholar
Jantzen, R. T., “Finite-Dimensional Einstein-Maxwell-Scalar Field System”, Phys. Rev. D, 33, 2121–2135, (1986). 3.1, 3.3.1, 3.4.1
ADS
MathSciNet
Article
Google Scholar
Jantzen, R. T., “Spatially Homogeneous Dynamics: A Unified Picture”, in Rufini, R., and Melchiorri, F., eds., Gamov Cosmology, 61–147, (North Holland, Amsterdam, 1987). For a related online version see: R. T. Jantzen, “Spatially Homogeneous Dynamics: A Unified Picture”, (February, 2001), [Online Los Alamos Archive Preprint]: cited on 12 Feb 2001, http://xxx.lanl.gov/abs/gr-qc/0102035. 3.3.1, 3.4.2
Google Scholar
Johnson, G., “What a Physicist Finds Obscene”, The New York Times, (16 Feb 1997). 2.2.1
Google Scholar
Kasner, E., “Solutions of the Einstein Equations Involving Functions of Only One Variable”, Trans. Am. Math. Soc., 27, 155–162, (1925). 3.1, 3.3.1
MathSciNet
MATH
Article
Google Scholar
Khalatnikov, I. M., Lifshitz, E. M., Khanin, K. M., Shchur, L. N., and Sinai, Ya. G., “On the Stochasticity in Relativistic Cosmology”, J. Stat. Phys., 38, 97–114, (1985).
ADS
MathSciNet
Article
Google Scholar
Kichenassamy, S., and Rendall, A. D., “Analytic Description of Singularities in Gowdy Spacetimes”, Class. Quantum Grav., 15, 1339–1355, (1998). 1, 3.4.2
ADS
MathSciNet
MATH
Article
Google Scholar
Kirillov, A. A., “The Nature of the Spatial Distribution of Metric Inhomogeneities in the General Solution of the Einstein Equations near a Cosmological Singularity”, JETP, 76, 355–358, (1993). 3.4.1
ADS
Google Scholar
Kirillov, A. A., and Kochnev, A. A., “Cellular Structure of Space near a Singularity in Time in Einstein’s Equations”, JETP Lett., 46, 435–438, (1987). 3.4.1
ADS
MathSciNet
Google Scholar
Koike, T., Hara, T., and Adachi, S., “Critical Behavior in Gravitational Collapse of Radiation Fluid: A Renormalization Group (Linear Perturbation) Analysis”, Phys. Rev. Lett., 74, 5170–5173, (1995). 2.2.2
ADS
Article
Google Scholar
LeBlanc, V. G., “Asymptotic States of Magnetic Bianchi I Cosmologies”, Class. Quantum Grav., 14, 2281–2301, (1997). 3.1, 3.3.1, 3.4.1
ADS
MathSciNet
MATH
Article
Google Scholar
LeBlanc, V. G., Kerr, D., and Wainwright, J., “Asymptotic States of Magnetic Bianchi VI0 Cosmologies”, Class. Quantum Grav., 12, 513–541, (1995). 3.1, 3.3.1, 3.4.1
ADS
MATH
Article
Google Scholar
Libson, J., Masso, J., Seidel, E., Suen, W.-M., and Walker, P., “Event Horizons in Numerical Relativity I: Methods and Tests”, Phys. Rev. D, 53, 4335–4350, (1996). For a related online version see: J. Libson, et al., “Event Horizons in Numerical Relativity I: Methods and Tests”, (December, 1994), [Online Los Alamos Archive Preprint]: cited on 22 Dec 1994, http://xxx.lanl.gov/abs/gr-gc/9412068. 2.1.1, 2.1.4
ADS
MathSciNet
Article
Google Scholar
Liebling, S. L., Hirschmann, E. W., and Isenberg, J., “Critical Phenomena in Nonlinear Sigma Models”, J. Math. Phys., 41, 5691–5700, (2000). For a related online version see: S. L. Liebling, et al., “Critical Phenomena in Nonlinear Sigma Models”, (November, 1999), [Online Los Alamos Archive Preprint]: cited on 1 Jun 2000, http://xxx.lanl.gov/abs/math-ph/9911020. 2.2.4
ADS
MathSciNet
MATH
Article
Google Scholar
Ma, P. K.-H., and Wainwright, J., “A Dynamical Systems Approach to the Oscillatory Singularity in Bianchi Cosmologies”, in Hobill, D. W., Burd, A., and Coley, A., eds., Deterministic Chaos in General Relativity, (Plenum, New York, 1994). 3.3.1
Google Scholar
MacCallum, M., “Anisotropic and Inhomogeneous Relativistic Cosmologies”, in Hawking, S. W., and Israel, W., eds., General Relativity, an Einstein Centenary Survey, chapter 11, (Cambridge University, Cambridge, 1979). 3.4.1
Google Scholar
Maison, D., “Non-Universality of Critical Behavior in Spherically Symmetric Gravitational Collapse”, Phys. Lett. B, 366, 82–84, (1966). For a related online version see: D. Maison, “Non-Universality of Critical Behavior in Spherically Symmetric Gravitational Collapse”, (April, 1995), [Online Los Alamos Archive Preprint]: cited on 05 Apr 1995, http://xxx.lanl.gov/abs/gr-gc/9504008. 2.2.2
ADS
Article
Google Scholar
Masso, J., Seidel, E., Suen, W.-M., and Walker, P., “Event Horizons in Numerical Relativity II: Analyzing the Horizon”, Phys. Rev. D, 59, 064015, (1999). For a related online version see: J. Masso, et al., “Event Horizons in Numerical Relativity II: Analyzing the Horizon”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 23 Apr 1998, http://xxx.lanl.gov/abs/gr-gc/9804059. 2.1.1, 2.1.4
ADS
MathSciNet
Article
Google Scholar
Mellor, F., and Moss, I., “Stability of Black Holes in de Sitter Space”, Phys. Rev. D, 41, 403–409, (1990). 2.3.3
ADS
MathSciNet
Article
Google Scholar
Mellor, F., and Moss, I., “A Reassessment of the Stability of the Cauchy Horizon in de Sitter Space”, Class. Quantum Grav., 9, L43–L46, (1992). 2.3.3
ADS
MathSciNet
Article
Google Scholar
Misner, C. W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969). 1, 3.1, 3.3.1
ADS
MATH
Article
Google Scholar
Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys. (N. Y.), 132, 87–107, (1981). 3.4.2
ADS
Article
Google Scholar
Moncrief, V., “Finite-Difference Approach to Solving Operator Equations of Motion in Quantum Theory”, Phys. Rev. D, 28, 2485–2490, (1983). 3.2.1
ADS
MathSciNet
Article
Google Scholar
Moncrief, V., “Reduction of Einstein’s Equations for Vacuum Space-Times with Spacelike U(1) Isometry Groups”, Ann. Phys. (N. Y.), 167, 118–142, (1986). 3.4.1, 3.4.3
ADS
MathSciNet
MATH
Article
Google Scholar
Moncrief, V., “Spacetime Singularities and Cosmic Censorship”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, 259–276, (World Scientific, Singapore, 1997). 1
MATH
Google Scholar
Montani, G., “On the General Behavior of the Universe near the Cosmological Singularity”, Class. Quantum Grav., 12, 2505–2517, (1995). 3.4.1
ADS
MATH
Article
Google Scholar
Moser, A. A., Matzner, R. A., and Ryan, Jr., M. P., “Numerical Solutions for Symmetric Bianchi Type IX Universes”, Ann. Phys. (N. Y.), 79, 558-579, (1973). 1, 3.3.1
ADS
Article
Google Scholar
Motter, A. E., and Letelier, P. S., “Mixmaster Chaos”, Phys. Lett. A, 285, 127–131, (2001). For a related online version see: A. E. Motter, et al., “Mixmaster Chaos”, (November, 2000), [Online Los Alamos Archive Preprint]: cited on 1 Nov 2000, http://xxx.lanl.gov/abs/gr-qc/0011001. 1, 3.1, 3.3.1
ADS
MathSciNet
MATH
Article
Google Scholar
Nakamura, T., and Sato, H., “General Relativistic Collapse of Non-Rotating Axisymmetric Stars”, Prog. Theor. Phys., 67, 1396–1405, (1982). 2.1.2
ADS
Article
Google Scholar
Nakamura, T., Shapiro, S. L., and Teukolsky, S. A., “Naked Singularities and the Hoop Conjecture: An Analytic Exploration”, Phys. Rev. D, 38, 2972–2978, (1988). 2.1.2
ADS
MathSciNet
Article
Google Scholar
Nakamura, T., Shibata, M., and Nakao, K., “Naked Singularity Dries Up?”, Prog. Theor. Phys., 89, 821–831, (1993). 2.1.4
ADS
Article
Google Scholar
Nakao, K., Iguchi, H., and Harada, T., “Newtonian Analysis of Gravitational Waves from Naked Singularity”, Phys. Rev. D, 63, 084003, (2001). For a related online version see: K. Nakao, et al., “Newtonian Analysis of Gravitational Waves from Naked Singularity”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 16 Jun 2000, http://xxx.lanl.gov/abs/astro-ph/0006057. 2.1.4
ADS
Article
Google Scholar
Niemeyer, J. C., and Jedamzik, K., “Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes”, Phys. Rev. Lett., 80, 5481–5484, (1998). For a related online version see: J. C. Niemeyer, et al., “Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 9 Sep 1997, http://xxx.lanl.gov/abs/astro-ph/9709072. 2.2.3
ADS
Article
Google Scholar
Norton, A. H., “Finite Difference Operators for PDE’s Based on Sampling Kernels for Spline Quasi-Interpolation”, University of New South Wales Preprint, (1992). 3.4.3
Google Scholar
Olabarrieta, I., Critical Collapse of Collisionless Matter in Spherical Symmetry, Masters Thesis, (University of British Columbia, Vancouver, 2000). For a related online version see: I. Olabarrieta, “Critical Collapse of Collisionless Matter in Spherical Symmetry”, (December, 2000), [Online Los Alamos Archive Preprint]: cited on 17 Dec 2000, http://xxx.lanl.gov/abs/gr-gc/0012059. 2.2.3
Google Scholar
Ori, A., “Inner Structure of a Charged Black Hole: An Exact Mass-Inflation Solution”, Phys. Rev. Lett., 67, 789–792, (1991). 1, 2.3.1
ADS
MathSciNet
MATH
Article
Google Scholar
Ori, A., “Structure of the Singularity inside a Realistic Black Hole”, Phys. Rev. Lett., 68, 2117–2120, (1992). 2.3.1, 2.3.2, 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Ori, A., “Null Weak Singularities in Plane-Symmetric Spacetimes”, Phys. Rev. D, 57, 4745–4753, (1998). For a related online version see: A. Ori, “Null Weak Singularities in Plane-Symmetric Spacetimes”, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 26 Jan 1998, http://xxx.lanl.gov/abs/gr-gc/9801086. 2.3.2
ADS
MathSciNet
Article
Google Scholar
Ori, A., “Evolution of Linear Gravitational and Electromagnetic Perturbations inside a Kerr Black Hole”, Phys. Rev. D, 61, 024001, (1999). 2.3.1
ADS
MathSciNet
Article
Google Scholar
Ori, A., “Oscillatory Null Singularity inside Realistic Spinning Black Holes”, Phys. Rev. Lett., 83, 5423–5426, (1999). For a related online version see: A. Ori, “Oscillatory Null Singularity inside Realistic Spinning Black Holes”, (January, 2001), [Online Los Alamos Archive Preprint]: cited on 5 Mar 2001, http://xxx.lanl.gov/abs/gr-gc/0103012. 2.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Ove, R., “Nonlinear Gravitational Effect”, Phys. Rev. Lett., 64, 1200-1203, (1990). 3.4.4
ADS
MathSciNet
MATH
Article
Google Scholar
Pelath, M. A., Tod, K. P., and Wald, R. M., “Trapped Surfaces in Prolate Collapse in the Gibbons-Penrose Construction”, Class. Quantum Grav., 15, 3917–3934, (1998). For a related online version see: M. A. Pelath, et al., “Trapped Surfaces in Prolate Collapse in the Gibbons-Penrose Construction”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 13 May 1998, http://xxx.lanl.gov/abs/gr-gc/9805051. 2.13, 2
ADS
MathSciNet
MATH
Article
Google Scholar
Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). 2
Google Scholar
Penrose, R., “Singularities and Time Asymmetry”, in Hawking, S. W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge, 1979). 2
Google Scholar
Poisson, E., “Black-Hole Interiors and Strong Cosmic Censorship”, in Burko, L. M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, (Institute of Physics, Bristol, 1998). For a related online version see: E. Poisson, “Black-Hole Interiors and Strong Cosmic Censorship”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 10 Sep 1997, http://xxx.lanl.gov/abs/gr-gc/9709022. 2.3.3
Google Scholar
Poisson, E., and Israel, W., “Inner-Horizon Instability and Mass Inflation in Black Holes”, Phys. Rev. Lett., 63, 1663–1666, (1989). 1, 2.3.1, 2.3.2
ADS
MathSciNet
Article
Google Scholar
Poisson, E., and Israel, W., “Internal Structure of Black Holes”, Phys. Rev. D, 41, 1796–1807, (1990). 2.3.1, 2.3.2
ADS
MathSciNet
Article
Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes: the Art of Scientific Computing (2nd edition, (Cambridge University, Cambridge, 1992). 3.3.1
MATH
Google Scholar
Pretorius, F., and Choptuik, M. W., “Gravitational Collapse in 2 + 1 Dimensional AdS Spacetime”, Phys. Rev. D, 62, 124012, (2000). For a related online version see: F. Pretorius, et al., “Gravitational Collapse in 2 + 1 Dimensional AdS Spacetime”, (July, 2000), [Online Los Alamos Archive Preprint]: cited on 6 Nov 2000, http://xxx.lanl.gov/abs/gr-qc/0007008. 2.2.4
ADS
MathSciNet
Article
Google Scholar
Pullin, J., “Time and Chaos in General Relativity”, in SILARG VII Relativity and Gravitation: Classical and Quantum, (World Scientific, Singapore, 1991). 1, 3.3.1
Google Scholar
Rein, G., Rendall, A. D., and Schaeffer, J., “Critical Collapse of Collisionless Matter: a Numerical Investigation”, Phys. Rev. D, 58, 044007, (1998). For a related online version see: G. Rein, et al., “Critical Collapse of Collisionless Matter—a Numerical Investigation”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 17 Apr 1998, http//xxx.lanl.gov/abs/gr-gc/9804040. 2.2.3
ADS
Article
Google Scholar
Rendall, A. D., “Global Dynamics of the Mixmaster Model”, Class. Quantum Grav., 14, 2341–2356, (1997). For a related online version see: A. D. Rendall, “Global Dynamics of the Mixmaster Model”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 14 Mar 1997, http://xxx.lanl.gov/abs/gr-gc/9703036. 3.3.1, 3.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Rendall, A. D., “Solutions of the Einstein Equations with Matter”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, 313–336, (World Scientific, Singapore, 1997). For a related online version see: A. D. Rendall, “Solutions of the Einstein Equations with Matter”, (October, 1995), [Online Los Alamos Archive Preprint]: cited on 5 Oct 1995, http://xxx.lanl.gov/abs/gr-gc/9510009. 1
Google Scholar
Rendall, A. D., and Weaver, M., “Manufacture of Gowdy Spacetimes with Spikes”, Class. Quantum Grav., 18, 2959–2976, (2001). For a related online version see: A. D. Rendall, et al., “Manufacture of Gowdy Spacetimes with Spikes”, (March, 2001), [Online Los Alamos Archive Preprint]: cited on 28 Mar 2001, http://xxx.lanl.gov/abs/gr-gc/0103102. 3.4.2
ADS
MathSciNet
MATH
Article
Google Scholar
Ringström, H., “Curvature Blow up in Bianchi VIII and IX Vacuum Spacetimes”, Class. Quantum Grav., 17, 713–731, (2000). For a related online version see: H. Ringstrom, “Curvature Blow up in Bianchi VIII and IX Vacuum Spacetimes”, (November, 1999), [Online Los Alamos Archive Preprint]: cited on 29 Nov 1999, http://xxx.lanl.gov/abs/gr-qc/9911115. 3.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Ringström, H., “The Bianchi IX Attractor”, Ann. Henri Poincare, 2, 405-500, (2001). For a related online version see: H. Ringström, “The Bianchi IX Attractor”, (June, 2000), [Online Los Alamos Archive Preprint]: cited on 10 Jun 2000, http://xxx.lanl.gov/abs/gr-qc/0006035. 36.3.2
ADS
MathSciNet
MATH
Article
Google Scholar
Rugh, S. E., Chaotic Behavior and Oscillating Three-Volumes in a Space-Time Metric in General Relativity, Masters Thesis, (Niels Bohr Institute, Copenhagen, 1990). Available on request to the author. 1, 3.3.1
Google Scholar
Rugh, S. E., “Chaos in the Einstein Equations-Characterization and Importance?”, in Hobill, D. W., Burd, A., and Coley, A., eds., Deterministic Chaos in General Relativity, (Plenum, New York, 1994). 3.3.1
Google Scholar
Rugh, S. E., and Jones, B. J. T., “Chaotic Behaviour and Oscillating Three-Volumes in Bianchi IX Universes”, Phys. Lett. A, 147, 353, (1990). 1, 3.3.1
ADS
MathSciNet
Article
Google Scholar
Ryan Jr., M. P., “Qualitative Cosmology: Diagrammatic Solutions for Bianchi IX Universes with Expansion, Rotation, and Shear II: The General Case”, Ann. Phys. (N. Y.), 68, 541–555, (1971). 3.3.1
ADS
Article
Google Scholar
Ryan Jr., M. P., and Shepley, L. C., Homogeneous Relativistic Cosmologies, (Princeton University, Princeton, 1975). 3.1, 3.4.2
Google Scholar
Schoen, R., and Yau, S.-T., “The Existence of a Black Hole Due to Condensation of Matter”, Commun. Math. Phys., 90, 575–579, (1983). 2.1.1
ADS
MathSciNet
MATH
Article
Google Scholar
Seidel, E., and Suen, W.-M., “Formation of Solitonic Stars Through Gravitational Cooling”, Phys. Rev. Lett., 72, 2516–2519, (1994). For a related online version see: E. Seidel, et al., “Formation of Solitonic Stars Through Gravitational Cooling”, (September, 1993), [Online Los Alamos Archive Preprint]: cited on 14 Sep 1993, http://xxx.lanl.gov/abs/gr-gc/9309015. 2.2.3
ADS
Article
Google Scholar
Shapiro, S. L., and Teukolsky, S. A., “Formation of Naked Singularities: The Violation of Cosmic Censorship”, Phys. Rev. Lett., 66, 994–997, (1991). 2.1.2, 2.1.4
ADS
MathSciNet
MATH
Article
Google Scholar
Shapiro, S. L., and Teukolsky, S. A., “Gravitational Collapse of Rotating Spheroids and the Formation of Naked Singularities”, Phys. Rev. D, 45, 2006–2012, (1992). 2.1.2
ADS
MathSciNet
Article
Google Scholar
Shapiro, S. L., and Teukolsky, S. A., “Relativistic Stellar Systems with Spindle Singularities”, Astrophys. J., 419, 622–635, (1993). 2.1.2
ADS
Article
Google Scholar
Stahl, F., “Fuchsian Analysis of S2 × S1 and S3 Gowdy Spacetimes”, (September, 2001), [Online Los Alamos Archive Preprint]: cited on 4 Sep 2001, http://xxx.lanl.gov/abs/gr-gc/0109011. 3.4.2
Suzuki, M., “Fractal Decomposition of Exponential Operators with Applications to Many-body Theories and Monte Carlo Simulations”, Phys. Lett. A, 146, 319–323, (1990). 3.2.1
ADS
MathSciNet
Article
Google Scholar
Suzuki, M., “General Theory of Fractal Path Integrals with Applications to Many-body Theories and Statistical Physics”, J. Math. Phys., 32, 400-407, (1991). 3.2.1
ADS
MathSciNet
MATH
Article
Google Scholar
Taub, A., “Empty Space-Times Admitting a Three-Parameter Group of Motions”, Ann. Math., 53, 472, (1951). 3.1, 3.3.1
ADS
MathSciNet
MATH
Article
Google Scholar
Teukolsky, S. A., “Stability of the Iterated Crank-Nicholson Method in Numerical Relativity”, Phys. Rev. D, 61, 087501, (2000). For a related online version see: S. A. Teukolsky, “On the Stability of the Iterated Crank-Nicholson Method in Numerical Relativity”, (September, 1999), [Online Los Alamos Archive Preprint]: cited on 7 Sep 1999, http://xxx.lanl.gov/abs/gr-gc/9909026. 3.2.2
ADS
Article
Google Scholar
Thornburg, J., Lechner, C., Purrer, M., Aichelburg, P. C., and Husa, S., “Episodic Self-Similarity in Critical Gravitational Collapse”, (December, 2000), [Online Los Alamos Archive Preprint]: cited on 22 May 2001, http://xxx.lanl.gov/abs/gr-qc/0012043. 2.2.4
Thorne, K. S., “Nonspherical Gravitational Collapse — A Short Review”, in Klauder, J., ed., Magic without Magic, 231–258, (W. H. Freeman, San Francisco, 1972). 1, 2.1.1, 2.1.4
Google Scholar
Tipler, F. J., Clarke, C. J. S., and Ellis, G. F. R., “Singularities and Horizons — A Review Article”, in Held, A., ed., General Relativity and Gravitation, 97–206, (Plenum, New York, 1980). 1
Google Scholar
Tod, K. P., “The Hoop Conjecture and the Gibbons-Penrose Construction of Trapped Surfaces”, Class. Quantum Grav., 9, 1581–1591, (1992). 2.1.2
ADS
MathSciNet
MATH
Article
Google Scholar
van Elst, H., Uggla, C., and Wainwright, J., “Dynamcal Systems Approach to G2 Cosmology”, (July, 2001), [Online Los Alamos Archive Preprint]: cited on 9 Nov 2001, http://xxx.lanl.gov/abs/gr-qc/0107041. 1
Google Scholar
van Putten, M. H. P. M., “Numerical Integration of Nonlinear Wave Equations for General Relativity”, Phys. Rev. D, 55, 4705–4711, (1997). For a related online version see: M. H. P. M. van Putten, “Numerical Integration of Nonlinear Wave Equations for General Relativity”, (January, 1997), [Online Los Alamos Archive Preprint]: cited on 10 Jan 1997, http://xxx.lanl.gov/abs/gr-gc/9701019. 3.4.2
ADS
MathSciNet
Article
Google Scholar
Wald, R. M., “Gravitational Collapse and Cosmic Censorship”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 6 Nov 1997, http://xxx.lanl.gov/abs/gr-gc/9710068. 1, 2, 2.1.1, 2.1.2
Wald, R. M., General Relativity, (University of Chicago Press, Chicago, 1984). 1, 2.3.1
MATH
Book
Google Scholar
Wald, R. M., and Iyer, V., “Trapped Surfaces in the Schwarzschild Geometry and Cosmic Censorship”, Phys. Rev. D, 44, 3719–3722, (1991).
ADS
MathSciNet
Article
Google Scholar
Weaver, M., Asymptotic Behavior to Solutions to Einstein’s Equation, PhD Thesis, (University of Oregon, Eugene, 1999). 3.4.1, 3.4.2
Google Scholar
Weaver, M., “Dynamics of Magnetic Bianchi VI0 Cosmologies”, Class. Quantum Grav., 17, 421–434, (2000). For a related online version see: M. Weaver, “Dynamics of Magnetic Bianchi VI0 Cosmologies”, (September, 1999), [Online Los Alamos Archive Preprint]: cited on 11 Nov 1999, http://xxx.lanl.gov/abs/gr-gc/9909043. 3.3.2, 3.4.1
ADS
MATH
Article
Google Scholar
Weaver, M., Berger, B. K., and Isenberg, J., “Oscillatory Approach to the Singularity in Vacuum T2 Symmetric Spacetimes”, in Gurzadyan, V., and Jantzen, R. T., eds., 9th Marcel Grossmann Meeting, (World Scientific, Singapore, 2002). For a related online version see: M. Weaver, et al., “Oscillatory Approach to the Singularity in Vacuum T2 Symmetric Spacetimes”, (January, 2001), [Online Los Alamos Archive Preprint]: cited on 16 Jan 2001, http://xxx.lanl.gov/abs/gr-gc/0101054. 3.4.2
Google Scholar
Weaver, M., Isenberg, J., and Berger, B. K., “Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes”, Phys. Rev. Lett., 80, 2984-2987, (1998). For a related online version see: M. Weaver, et al., “Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes”, (December, 1997), [Online Los Alamos Archive Preprint]: cited on 11 Mar 1998, http://xxx.lanl.gov/abs/gr-gc/9712055. 1, 3.4.1, 3.4.2
ADS
Article
Google Scholar
Wojtkiewicz, J., “Naked Singularities in Initial Surfaces”, Phys. Rev. D, 41, 1867–1874, (1990). 2.1.2
ADS
MathSciNet
Article
Google Scholar
Yokoyama, J., “Cosmological Constraints on Primordial Black Holes Produced in Near-Critical Gravitational Collapse”, Phys. Rev. D, 58, 107502, (1998). For a related online version see: J. Yokoyama, “Cosmological Constraints on Primordial Black Holes Produced in Near-Critical Gravitational Collapse”, (April, 1998), [Online Los Alamos Archive Preprint]: cited on 24 Jul 1998, http://xxx.lanl.gov/abs/gr-gc/9804041. 2.2.3
ADS
Article
Google Scholar
Zardecki, A., “Modeling in Chaotic Relativity”, Phys. Rev. D, 28, 1235-1242, (1983). 3.4.4
ADS
MathSciNet
Article
Google Scholar
Zotov, M., “Einstein-Yang-Mills Black Hole Interiors: Serious Problems But Simple Solution”, (April, 1997), [Online Los Alamos Archive Preprint]: cited on 11 Jun 1997, http://xxx.lanl.gov/ps/gr-qc/9704080. 2.3.2