Andersson, L., Chruściel, P. T. and Friedrich, H., “On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations”, Commun. Math. Phys., 149, 587–612 (1992).
Article
ADS
MathSciNet
MATH
Google Scholar
Arnold, V. I. and Ilyashenko, Y. S., “Ordinary differential equations”, in Anosov, D. V. and Arnold, V. I., eds., Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems, Encyclopaedia of Mathematical Sciences, 1, pp. 1–148, (Springer, Berlin; New York, 1988).
Google Scholar
Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften, 252, (Springer, Berlin; New York, 1982).
Book
MATH
Google Scholar
Bartnik, R., “Remarks on cosmological spacetimes and constant mean curvature hypersurfaces”, Commun. Math. Phys., 117, 615–624 (1988).
Article
ADS
MATH
Google Scholar
Bartnik, R. and McKinnon, J., “Particlelike Solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141–143 (1988).
Article
ADS
MathSciNet
Google Scholar
Berger, B. K., Chruściel, P. T., Isenberg, J. A. and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148 (1997).
Article
ADS
MATH
Google Scholar
Berger, B. K., Chruściel, P. T. and Moncrief, V., “On “Asymptotically Flat” Space-Times with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N.Y.), 237, 322–354 (1995).
Article
ADS
MATH
Google Scholar
Bourguignon, J.-P., “Stabilité par déformation non-linéaire de la métrique de Minkowski (d’après D. Christodoulou et S. Klainerman)”, Asterisque, 201–203, 321–358 (1991).
Google Scholar
Brauer, U., Rendall, A. D. and Reula, O. A., “The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11, 2283–2296 (1994).
Article
ADS
MATH
Google Scholar
Brodbeck, O., Heusler, M., Straumann, N. and Volkov, M., “Rotating solitons and non-rotating non-static black holes”, Phys. Rev. Lett., 79, 4310–4313 (1997).
Article
ADS
Google Scholar
Burnett, G. A. and Rendall, A. D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13, 111–123 (1996).
Article
ADS
MathSciNet
MATH
Google Scholar
Cantor, M., “A necessary and sufficient condition for York data to specify an asymptotically flat spacetime”, J. Math. Phys., 20, 1741–1744 (1979).
Article
ADS
MathSciNet
MATH
Google Scholar
Choquet-Bruhat, Y., “The Cauchy problem in classical supergravity”, Lett. Math. Phys., 7, 459–467 (1983).
Article
ADS
MathSciNet
MATH
Google Scholar
Choquet-Bruhat, Y. and Geroch, R., “Global aspects of the Cauchy problem in general relativity”, Commun. Math. Phys., 14, 329–335 (1969).
Article
ADS
MathSciNet
MATH
Google Scholar
Choquet-Bruhat, Y. and York, J. W., “The Cauchy problem”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 1, pp. 99–172, (Plenum, New York, 1980).
Google Scholar
Christodoulou, D., “Global existence of generalized solutions of the spherically symmetric Einstein-scalar equations in the large”, Commun. Math. Phys., 106, 587–621 (1986).
Article
ADS
MathSciNet
MATH
Google Scholar
Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337–361 (1986).
Article
ADS
MathSciNet
MATH
Google Scholar
Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109(4), 613–647 (1987).
Article
ADS
MathSciNet
MATH
Google Scholar
Christodoulou, D., “The structure and uniqueness of generalised solutions of the spherically symmetric Einstein-scalar equations”, Commun. Math. Phys., 109, 591–611 (1987).
Article
ADS
MATH
Google Scholar
Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373 (1991).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D., “Bounded variation solutions of the spherically symmetric Einstein-scalar field equations”, Commun. Pure Appl. Math., 46, 1131–1220 (1993).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D., “Examples of naked singularity formation in the gravitational collapse of a scalar field”, Ann. Math., 140, 607–653 (1994).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D., “Self-Gravitating Fluids: A Two-Phase Model”, Arch. Ration. Mech. Anal., 130, 343–400 (1995).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D., “Self-Gravitating Fluids: The Continuation and Termination of a Free Phase Boundary”, Arch. Ration. Mech. Anal., 133, 333–398 (1996).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D., “Self-Gravitating Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Soft to Hard”, Arch. Ration. Mech. Anal., 134, 97–154 (1996).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183–217 (1999).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D. and Klainerman, S., “Asymptotic properties of linear field equations in Minkowski space”, Commun. Pure Appl. Math., 43, 137–199 (1990).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D. and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, (Princeton University Press, Princeton, 1993).
MATH
Google Scholar
Christodoulou, D. and Ó Murchadha, N., “The boost problem in general relativity”, Commun. Math. Phys., 80, 271–300 (1981).
Article
ADS
MathSciNet
MATH
Google Scholar
Christodoulou, D. and Tahvildar-Zadeh, A. S., “On the asymptotic behaviour of spherically symmetric wave maps”, Duke Math. J., 71, 31–69 (1993).
Article
MathSciNet
MATH
Google Scholar
Christodoulou, D. and Tahvildar-Zadeh, A. S., “On the regularity of spherically symmetric wave maps”, Commun. Pure Appl. Math., 46, 1041–1091 (1993).
Article
MathSciNet
MATH
Google Scholar
Chruściel, P. T., “On Space-Time with U(1) × U(1) Symmetric Compact Cauchy Surfaces”, Ann. Phys. (N.Y.), 202, 100–150 (1990).
Article
ADS
MathSciNet
MATH
Google Scholar
Chruściel, P. T., On Uniqueness in the Large of Solutions of Einstein’s Equations (Strong Cosmic Censorship), Proceedings of the Centre for Mathematics and its Applications, 27, (Australian National University Press, Canberra, Australia, 1991).
MATH
Google Scholar
Chruściel, P. T., “Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation”, Commun. Math. Phys., 137, 289–313 (1991).
Article
ADS
MathSciNet
MATH
Google Scholar
Chruściel, P. T., Isenberg, J. A. and Moncrief, V., “Strong cosmic censorship in polarised Gowdy spacetimes”, Class. Quantum Grav., 7, 1671–1680 (1990).
Article
ADS
MathSciNet
MATH
Google Scholar
Claudel, C. M. and Newman, K. P., “The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time”, Proc. R. Soc. London, Ser. A, 454, 1073–1107 (1998).
Article
ADS
MathSciNet
MATH
Google Scholar
Dossa, M., “Espaces de Sobolev non isotropes, à poids et problèmes de Cauchy quasi-linéaires sur un conoïde caractéristique”, Ann. Inst. Henri Poincare A, 66, 37–107 (1997).
MathSciNet
MATH
Google Scholar
Eardley, D. M. and Moncrief, V., “The global existence of Yang-Mills fields in M3+1”, Commun. Math. Phys., 83, 171–212 (1982).
Article
ADS
MATH
Google Scholar
Friedrich, H., “Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant”, J. Geom. Phys., 3, 101–117 (1986).
Article
ADS
MathSciNet
MATH
Google Scholar
Friedrich, H., “On the global existence and asymptotic behaviour of solutions to the Einstein-Yang-Mills equations”, J. Differ. Geom., 34, 275–345 (1991).
Article
MATH
Google Scholar
Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de Sitter-type spacetimes”, J. Geom. Phys., 17, 125–184 (1995).
Article
ADS
MathSciNet
MATH
Google Scholar
Friedrich, H., “Hyperbolic reductions of Einstein’s field equations”, Class. Quantum Grav., 13, 1451–1469 (1996).
Article
ADS
MATH
Google Scholar
Friedrich, H., “Gravitational fields near spacelike and null infinity”, J. Geom. Phys., 24, 83–172 (1998).
Article
ADS
MathSciNet
Google Scholar
Fritelli, S. and Reula, O. A., “On the Newtonian limit of general relativity”, Commun. Math. Phys., 166, 221–235 (1994).
Article
ADS
MathSciNet
MATH
Google Scholar
Hartman, P., Ordinary Differential Equations, (Birkhäuser, Boston, 1982), 2nd edition.
MATH
Google Scholar
Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge; New York, 1996).
Book
MATH
Google Scholar
Heusler, M., “Stationary black holes: Uniqueness and beyond”, Living Rev. Relativity, 1 (1998). URL (accessed 3 January 1998): http://www.livingreviews.org/lrr-1998-6.
Hubbard, J. H. and West, B. H., Differential Equations: A Dynamical Systems Approach, Vol. 1: Ordinary Differential Equations, Texts in Applied Mathematics, 5, (Springer, Berlin; New York, 1991), 3rd edition.
Book
Google Scholar
Isenberg, J. A., “Constant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 12, 2249–2274 (1995).
Article
ADS
MathSciNet
MATH
Google Scholar
Isenberg, J. A. and Moncrief, V., “Asymptotic Behaviour of the Gravitational Field and the Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N.Y.), 199, 84–122 (1990).
Article
ADS
MATH
Google Scholar
Isenberg, J. A. and Moncrief, V., “A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 13, 1819–1847 (1996).
Article
ADS
MathSciNet
MATH
Google Scholar
John, F., Partial Differential Equations, Applied Mathematical Sciences, 1, (Springer, Berlin; New York, 1982), 4th edition.
Book
MATH
Google Scholar
John, F., Nonlinear Wave Equations, Formation of Singularities, University Lecture Series, 2, (American Mathematical Society, Providence, 1990).
Google Scholar
Kichenassamy, S., Nonlinear Wave Equations, Monographs and Textbooks in Pure and Applied Mathematics, 194, (Marcel Dekker, New York, 1996).
MATH
Google Scholar
Klainerman, S. and Machedon, M., “Finite energy solutions of the Yang-Mills equations in R3+1”, Ann. Math., 142, 39–119 (1995).
Article
MathSciNet
MATH
Google Scholar
Kleihaus, B. and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-dilaton solutions: Regular solutions”, Phys. Rev. D, 57, 834–856 (1997). Online version (accessed 7 January 1998): http://arXiv.org/abs/gr-qc/9707045.
Article
ADS
MathSciNet
MATH
Google Scholar
Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53, (Springer, Berlin; New York, 1984).
Book
MATH
Google Scholar
Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys. (N.Y.), 132, 87–107 (1981).
Article
ADS
Google Scholar
Moncrief, V., “Neighbourhoods of Cauchy horizons in cosmological spacetimes with one Killing field”, Ann. Phys. (N.Y.), 141, 83–103 (1982).
Article
ADS
MATH
Google Scholar
Moncrief, V. and Eardley, D. M., “The global existence problem and cosmic censorship in general relativity”, Gen. Relativ. Gravit., 13, 887–892 (1981).
Article
ADS
MathSciNet
Google Scholar
Newman, R. P. A. C., “On the Structure of Conformal Singularities in Classical General Relativity”, Proc. R. Soc. London, 443, 473–492 (1993). see also Pt. II: Evolution Equations and a Conjecture, pp. 493–515.
ADS
MathSciNet
MATH
Google Scholar
Racke, R., Lectures on Nonlinear Evolution Equations: Initial Value Problems, Aspects of Mathematics, 19, (Vieweg, Wiesbaden, 1992).
Book
MATH
Google Scholar
Rein, G., “Cosmological solutions of the Vlasov-Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739–762 (1996).
Article
MathSciNet
MATH
Google Scholar
Rein, G., “Nonlinear Stability of Homogeneous Models in Newtonian Cosmology”, Arch. Ration. Mech. Anal., 140, 335–351 (1997). Online version (accessed 7 January 1998): http://arXiv.org/abs/gr-qc/9603033.
Article
MathSciNet
MATH
Google Scholar
Rein, G. and Rendall, A. D., “Global Existence of Classical Solutions to the Vlasov-Poisson System in a Three Dimensional, Cosmological Setting”, Arch. Ration. Mech. Anal., 126, 183–201 (1994).
Article
MathSciNet
MATH
Google Scholar
Rendall, A. D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221–239 (1990).
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341–360 (1992).
Article
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system”, Commun. Math. Phys., 163, 89–112 (1994).
Article
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517–1533 (1995).
Article
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “Constant mean curvature foliations in cosmological spacetimes”, Helv. Phys. Acta, 69, 490–500 (1996).
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “The initial singularity in solutions of the Einstein-Vlasov system of Bianchi type I”, J. Math. Phys., 37, 438–451 (1996).
Article
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589–3598 (1997).
Article
MathSciNet
MATH
Google Scholar
Rendall, A. D., “Existence of Constant Mean Curvature Foliations in Spacetimes with Two-Dimensional Local Symmetry”, Commun. Math. Phys., 189, 145–164 (1997).
Article
ADS
MathSciNet
MATH
Google Scholar
Rendall, A. D., “Existence of constant mean curvature hypersurfaces in spacetimes with two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164 (1997).
Article
ADS
MATH
Google Scholar
Smoller, J. A., Wasserman, A. G., Yau, S.-T. and McLeod, J. B., “Smooth static solutions of the Einstein-Yang-Mills equations”, Commun. Math. Phys., 143, 115–147 (1991).
Article
ADS
MathSciNet
MATH
Google Scholar
Strauss, W., Nonlinear Wave Equations, Regional Conference Series in Mathematics, 73, (American Mathematical Society, Providence, 1989).
Google Scholar
Taylor, M. E., Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, 100, (Birkhäuser, Boston, 1991).
Book
MATH
Google Scholar
Taylor, M. E., Partial Differential Equations, Applied Mathematical Sciences, 115–117, (Springer, Berlin; New York, 1996).
Book
Google Scholar
Tod, K. P., “Isotropic singularities”, Rend. Sem. Mat. Univ. Pol. Torino, 50, 69–93 (1992).
MathSciNet
MATH
Google Scholar
Tod, K. P., “Isotropic cosmological singularities”, in De Wit, D., Bracken, A. J., Gould, M. D. and Pearce, P. A., eds., XIIth International Congress of Mathematical Physics (ICMP ’97), Proceedings of the congress held at the University of Queensland, Brisbane, Australia, July 13–19 1997, (International Press, Somerville, 1999).
Google Scholar
Wainwright, J. and Ellis, G. F. R., Dynamical Systems in Cosmology, (Cambridge University Press, Cambridge; New York, 1997).
Book
MATH
Google Scholar
Witt, D., “Vacuum spacetimes that admit no maximal slice”, Phys. Rev. Lett., 57, 1386–1389 (1986).
Article
ADS
MathSciNet
Google Scholar
Woodhouse, N. M. J., “Integrability and Einstein’s equations”, in Chruściel, P. T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, Poland, February 29–March 30, 1996, Banach Center Publications, 41, pp. 221–232, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997).
Google Scholar