Skip to main content

Advertisement

Log in

Metabolomic Analysis Reveals that SPHK1 Promotes Oral Squamous Cell Carcinoma Progression through NF-κB Activation

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Metabolic disorders are significant in the occurrence and development of malignant tumors. Changes of specific metabolites and metabolic pathways are molecular therapeutic targets. This study aims to determine the metabolic differences between oral squamous cell carcinoma (OSCC) tissues and paired adjacent noncancerous tissues (ANT) through liquid chromatography-mass spectrometry (LC-MS). SPHK1 is a key enzyme in sphingolipid metabolism. This study also investigates the potential role of SPHK1 in OSCC.

Materials and Methods

This study used LC-MS to analyze metabolic differences between OSCC tissues and paired ANT. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were applied to explain the significance of phospholipid metabolism pathways in the occurrence and development of OSCC. Through further experiments, we confirmed the oncogenic phenotypes of SPHK1 in vitro and in vivo, including proliferation, migration, and invasion.

Results

The sphingolipid metabolic pathway was significantly activated in OSCC, and the key enzyme SPHK1 was significantly upregulated in oral cancer tissues, predicting poor OSCC prognosis. In this study, SPHK1 overexpression was associated with high-grade malignancy and poor OSCC prognosis. SPHK1 targeted NF-κB by facilitating p65 expression to regulate OSCC tumor progression and promote metastasis.

Conclusions

This study identified metabolic differences between OSCC and paired ANT, explored the carcinogenic role of overexpressed SPHK1, and revealed the association of SPHK1 with poor OSCC prognosis. SPHK1 targets NF-κB signaling by facilitating p65 expression to regulate tumor progression and promote tumor metastasis, providing potential therapeutic targets for diagnosing and treating oral tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. Bloebaum M, Poort L, Böckmann R, et al. Survival after curative surgical treatment for primary oral squamous cell carcinoma. J Craniomaxillofac Surg. 2014;42(8):1572–6.

    Article  CAS  PubMed  Google Scholar 

  2. Gangopadhyay A, Bhatt S, Nandy K, et al. Survival impact of surgical resection in locally advanced T4b oral squamous cell carcinoma. Laryngoscope. 2021;131(7):E2266–74.

    Article  PubMed  Google Scholar 

  3. Flörke C, Gülses A, Altmann CR, et al. Clinicopathological risk factors for contralateral lymph node metastases in intraoral squamous cell carcinoma: a study of 331 cases. Curr Oncol. 2021;28(3):1886–98.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Panarese I, Aquino G, Ronchi A, et al. Oral and oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route. Expert Rev Anticancer Ther. 2019;19(2):105–19.

    Article  CAS  PubMed  Google Scholar 

  5. Wolff KD, Follmann M, Nast A. The diagnosis and treatment of oral cavity cancer. Dtsch Arztebl Int. 2012;109(48):829–35.

    PubMed  PubMed Central  Google Scholar 

  6. Almangush A, Mäkitie AA, Triantafyllou A, et al. Staging and grading of oral squamous cell carcinoma: An update. Oral Oncol. 2020;107:104799.

    Article  PubMed  Google Scholar 

  7. Vitório JG, Duarte-Andrade FF, Dos Santos Fontes Pereira T, et al. Metabolic landscape of oral squamous cell carcinoma. Metabolomics. 2020;16(10):105.

    Article  PubMed  Google Scholar 

  8. Wang L, Wang X, Li Y, et al. Plasma lipid profiling and diagnostic biomarkers for oral squamous cell carcinoma. Oncotarget. 2017;8(54):92324–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yonezawa K, Nishiumi S, Kitamoto-Matsuda J, et al. Serum and tissue metabolomics of head and neck. Cancer Genomics Proteomics. 2013;10(5):233–8.

    CAS  PubMed  Google Scholar 

  10. Tsai CK, Lin CY, Kang CJ, et al. Nuclear magnetic resonance metabolomics biomarkers for identifying high risk patients with extranodal extension in oral squamous cell carcinoma. J Clin Med. 2020;9(4):951.

    Article  CAS  PubMed Central  Google Scholar 

  11. Wei J, Xie G, Zhou Z, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer. 2011;129(9):2207–17.

    Article  CAS  PubMed  Google Scholar 

  12. Mikkonen JJ, Singh SP, Herrala M, et al. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J Periodontal Res. 2016;51(4):431–7.

    Article  CAS  PubMed  Google Scholar 

  13. Somashekar BS, Kamarajan P, Danciu T, et al. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res. 2011;10(11):5232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng X, Li W, Ren L, et al. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol Ther. 2019;195:85–99.

    Article  CAS  PubMed  Google Scholar 

  15. Wollny T, Watek M, Durnas B, et al. Sphingosine-1-phosphate metabolism and its role in the development of inflammatory bowel disease. Int J Mol Sci. 2017;18(4):741.

    Article  PubMed Central  Google Scholar 

  16. Dai L, Wang W, Liu Y, et al. Inhibition of sphingosine kinase 2 down-regulates ERK/c-Myc pathway and reduces cell proliferation in human epithelial ovarian cancer. Ann Transl Med. 2021;9(8):645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song L, Xiong H, Li J, et al. Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clin Cancer Res. 2011;17(7):1839–49.

    Article  CAS  PubMed  Google Scholar 

  18. Shida D, Fang X, Kordula T, et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 2008;68(16):6569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grbcic P, Tomljanovic I, Klobucar M, et al. Dual sphingosine kinase inhibitor SKI-II enhances sensitivity to 5-fluorouracil in hepatocellular carcinoma cells via suppression of osteopontin and FAK/IGF-1R signalling. Biochem Biophys Res Commun. 2017;487(4):782–8.

    Article  CAS  PubMed  Google Scholar 

  20. Uranbileg B, Ikeda H, Kurano M, et al. Increased mRNA levels of sphingosine kinases and s1p lyase and reduced levels of s1p were observed in hepatocellular carcinoma in association with poorer differentiation and earlier recurrence. PLoS One. 2016;11(2):e0149462.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Acharya S, Yao J, Li P, et al. Sphingosine kinase 1 signaling promotes metastasis of triple-negative breast cancer. Cancer Res. 2019;79(16):4211–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bao Y, Guo Y, Zhang C, et al. Sphingosine kinase 1 and sphingosine-1-phosphate signaling in colorectal cancer. Int J Mol Sci. 2017;18(10):2109.

    Article  PubMed Central  Google Scholar 

  23. Shen Z, Feng X, Fang Y, et al. POTEE drives colorectal cancer development via regulating SPHK1/p65 signaling. Cell Death Dis. 2019;10(11):863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Zheng X, Wu X, et al. Sphk1 promotes breast epithelial cell proliferation via NF-κB-p65-mediated cyclin D1 expression. Oncotarget. 2016;6(49):80579–85.

    Article  Google Scholar 

  25. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiao Q, Zhang F, Xu L, et al. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev. 2021;176:113844.

    Article  CAS  PubMed  Google Scholar 

  27. Nassar AF, Wu T, Nassar SF, et al. UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today. 2017;22(2):463–70.

    Article  CAS  PubMed  Google Scholar 

  28. Xie F, Liu T, Qian WJ, et al. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Current Opin Biotechnol. 2019;55:44–50.

    Article  CAS  Google Scholar 

  30. Duarte D, Castro B, Pereira JL, et al. Evaluation of saliva stability for NMR metabolomics: collection and handling protocols. Metabolites. 2020;10(12):515.

    Article  CAS  PubMed Central  Google Scholar 

  31. Faedo RR, Ushida TR, Lacchini R, et al. Sphingolipids signature in plasma and tissue as diagnostic and prognostic tools in oral squamous cell carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(1):159057.

    Article  CAS  PubMed  Google Scholar 

  32. Kato K, Shimasaki M, Kato T, et al. Expression of sphingosine kinase-1 is associated with invasiveness and poor prognosis of oral squamous cell carcinoma. Anticancer Res. 2018;38(3):1361–8.

    CAS  PubMed  Google Scholar 

  33. Gomez-Larrauri A, Presa N, Dominguez-Herrera A, et al. Role of bioactive sphingolipids in physiology and pathology. Essays Biochem. 2020;64(3):579–89.

    Article  CAS  PubMed  Google Scholar 

  34. Sukocheva OA, Furuya H, Friedemann M, et al. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target. Pharmacol Ther. 2020;207:107464.

    Article  CAS  PubMed  Google Scholar 

  35. Xu C, Zhang W, Liu S, et al. Activation of the SphK1/ERK/p-ERK pathway promotes autophagy in colon cancer cells. Oncol Lett. 2018;15(6):9719–24.

    PubMed  PubMed Central  Google Scholar 

  36. Imbert C, Montfort A, Fraisse M, et al. Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat Commun. 2020;11(1):437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hii LW, Chung FF, Mai CW, et al. Sphingosine kinase 1 regulates the survival of breast cancer stem cells and non-stem breast cancer cells by suppression of STAT1. Cells. 2020;9(4):886.

    Article  CAS  PubMed Central  Google Scholar 

  38. Giridharan S, Srinivasan M. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J Inflamm Res. 2018;11:407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amaro-Leal Â, Shvachiy L, Pinto R, et al. Therapeutic effects of IkB kinase inhibitor during systemic inflammation. Int Immunopharmacol. 2020;84:106509.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Xu H, Jiao H, et al. STX2 promotes colorectal cancer metastasis through a positive feedback loop that activates the NF-kappaB pathway. Cell Death Dis. 2018;9(6):664.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schmitz ML, Kracht M. Cyclin-dependent kinases as coregulators of inflammatory gene expression. Trends Pharmacol Sci. 2016;37(2):101–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Wei Zhang and Prof. Xiao-Ling Song for their excellent pathological technical support. This research was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions: PAPD, 2018-87; Jiangsu Provincial Medical Key Talent Project: ZDRCA2016087; Southeast University-Nanjing Medical University Cooperative Research Project: 2017DN03.\

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-xing Wang MD, PhD or Jin-hai Ye MD, PhD.

Ethics declarations

Disclosure

All the authors listed above declare that they have no conflicts of interest.

Ethics Approval

The study was approved by the Research Ethics Committee of Nanjing Medical University, China.

Patient Consent

Informed consent was obtained from the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10434_2022_12098_MOESM1_ESM.docx

Supplementary Fig. 1. (A) Statistics of SPHK1 positive areas in different clinical stages; (B, C) TUNEL staining for apoptosis analysis of cells (DOCX 17 KB)

Supplementary Fig. 2 (A, B) immunofluorescence expression of E-cadherin and vimentin in Cal 27 cells (TIF 14768 KB)

10434_2022_12098_MOESM3_ESM.tif

Supplementary Fig. 3. (A) total and phosphorylated p65 levels in HN6 cells; (B, C) QNZ treatment significantly reduced the enhanced proliferation ability of cells caused by SPHK1 overexpressed; (D, E, F) QNZ significantly inhibited the migration and invasion in HN6 cells (TIF 10924 KB)

10434_2022_12098_MOESM4_ESM.tif

Supplementary Fig. 4. (A) Total and phosphorylated p65 levels in mouse xenograft specimens; (B–D) statistics of the invasion and migration ability of Cal 27 cells after QNZ intervention (TIF 5157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Cx., Mao, Gy., Sun, Qw. et al. Metabolomic Analysis Reveals that SPHK1 Promotes Oral Squamous Cell Carcinoma Progression through NF-κB Activation. Ann Surg Oncol 29, 7386–7399 (2022). https://doi.org/10.1245/s10434-022-12098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-12098-8

Navigation