Skip to main content

Advertisement

Log in

Optimizing the Combination of Immunotherapy and Trans-Arterial Locoregional Therapy for Stages B and C Hepatocellular Cancer

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC), the most common primary hepatic malignancy worldwide, is the second leading cause of cancer-related death. Underlying liver dysfunction and advanced stage of disease require treatments to be optimally timed and implemented to minimize hepatic parenchymal damage while maximizing disease response and quality of life. Locoregional therapies (LRTs) such as trans-arterial chemo- and radio-embolization remain effective for intermediate liver-only and advanced HCC disease (i.e., Barcelona-Clinic liver cancer stages B and C) not amendable to primary resection or ablation. Additionally, these minimally invasive interventions have been shown to augment the immune system. This and the recent success of immune-oncologic treatments for HCC have generated interest in applying these therapies in combination with such locoregional interventions to improve patient outcomes and response rates. This report reviews the use of trans-arterial LRTs with immunotherapy for stages B and C HCC, potential biomarkers, and imaging methods for assessing the response and safety of such combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark T, et al. Hepatocellular carcinoma: review of epidemiology, screening, imaging diagnosis, response assessment, and treatment. Curr Probl Diagn Radiol. 2015;44:479–86.

    Article  PubMed  Google Scholar 

  2. Sim HW, Knox J. Hepatocellular carcinoma in the era of immunotherapy. Curr Probl Cancer. 2018;42:40–8.

    Article  PubMed  Google Scholar 

  3. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fujiwara N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol. 2018;68:526–49.

    Article  PubMed  Google Scholar 

  5. Hage C, et al. Characterizing responsive and refractory orthotopic mouse models of hepatocellular carcinoma in cancer immunotherapy. PLoS ONE. 2019;14:e0219517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gbolahan OB, et al. Locoregional and systemic therapy for hepatocellular carcinoma. J Gastrointest Oncol. 2017;8:215–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gao Q, et al. Heterogeneity of intermediate-stage HCC necessitates personalized management including surgery. Nat Rev Clin Oncol. 2015;12:10.

  8. Bteich F, Di Bisceglie AM. Current and future systemic therapies for hepatocellular carcinoma. Gastroenterol Hepatol. 2019;15:266–72.

    Google Scholar 

  9. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    Article  PubMed  Google Scholar 

  10. Kim JM, et al. Patients with unresectable hepatocellular carcinoma beyond milan criteria: should we perform transarterial chemoembolization or liver transplantation? Transplant Proceed. 2010;42:821–4.

    Article  CAS  Google Scholar 

  11. Jianyong L, et al. Barcelona Clinic liver cancer stage B hepatocellular carcinoma: transarterial chemoembolization or hepatic resection? Medicine. 2014;93:e180.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greten TF, et al. Combined locoregional-immunotherapy for liver cancer. J Hepatol. 2019;70:999–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19:6678–85.

    Article  CAS  PubMed  Google Scholar 

  14. Wissniowski TT, et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res. 2003;63:6496–500.

    CAS  PubMed  Google Scholar 

  15. Kudo M, et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut. 2020;69:1492.

    Article  PubMed  Google Scholar 

  16. Lencioni R, et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J Hepatol. 2016;64:1090–8.

    Article  CAS  PubMed  Google Scholar 

  17. Slovak R, et al. Immuno-thermal ablations: boosting the anticancer immune response. J Immunother Cancer. 2017;5:78.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dendy MS, et al. Locoregional therapy, immunotherapy, and the combination in hepatocellular carcinoma: future directions. Liver Cancer. 2019;8:326–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Khoueiry AB, et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. J Clin Oncol. 2015;33(18 Suppl):LBA101.

  20. Sangro B, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu AX, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–52.

    Article  PubMed  Google Scholar 

  22. Finn RS, et al. Results of KEYNOTE-240: phase 3 study of pembrolizumab (Pembro) vs best supportive care (BSC) for second-line therapy in advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2019;37(15 Suppl):4004.

    Article  Google Scholar 

  23. El-Khoueiry AB, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yau T, et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J Clin Oncol. 2019;37(15 Suppl):4012.

    Article  Google Scholar 

  25. Yau T, et al. CheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30:v874–5.

    Article  Google Scholar 

  26. Hiroishi K, et al. Strong CD8 + T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol. 2010;45:451–8.

    Article  CAS  PubMed  Google Scholar 

  27. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12:681–700.

    Article  CAS  PubMed  Google Scholar 

  28. Gamrekelashvili J, Greten TF, Korangy F. Immunogenicity of necrotic cell death. CMLS Cell Mol Life Sci. 2015;72:273–83.

    Article  CAS  PubMed  Google Scholar 

  29. Scheffer SR, et al. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer. 2003;103:205–11.

    Article  CAS  PubMed  Google Scholar 

  30. Gamrekelashvili J, et al. Peptidases released by necrotic cells control CD8 + T cell cross-priming. J Clin Invest. 2013;123:4755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayaru L, et al. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol. 2007;178:1914–22.

    Article  CAS  PubMed  Google Scholar 

  32. den Brok MH, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer. 2006;95:896–905.

    Article  Google Scholar 

  33. Duffy AG, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66:545–51.

    Article  CAS  PubMed  Google Scholar 

  34. Brar G, Greten TF, Brown ZJ. Current frontline approaches in the management of hepatocellular carcinoma: the evolving role of immunotherapy. Ther Adv Gastroenterol. 2018;11:1756284818808086.

    Article  Google Scholar 

  35. Qin S, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21:571–80.

    Article  CAS  PubMed  Google Scholar 

  36. Wainberg ZA, et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2017;35(15 Suppl):4071.

    Article  Google Scholar 

  37. Finn RS, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  38. Raoul JL, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36.

    Article  CAS  PubMed  Google Scholar 

  39. Golfieri R, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer. 2014;111:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lammer J, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent. Radiol. 2010;33:41–52.

    Article  PubMed  Google Scholar 

  41. Malagari K, et al. Prospective randomized comparison of chemoembolization with doxorubicin-eluting beads and bland embolization with BeadBlock for hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2010;33:541–51.

    Article  PubMed  Google Scholar 

  42. Boulin M, et al. Transarterial chemoembolization for hepatocellular carcinoma: an old method, now flavor of the day. Diagn Intervent Imaging. 2015;96:607–15.

    Article  CAS  Google Scholar 

  43. Marelli L, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30:6–25.

    Article  PubMed  Google Scholar 

  44. Apetoh L, et al. Immunogenicity of anthracyclines: moving towards more personalized medicine. Trends Mol Med. 2008;14:141–51.

    Article  CAS  PubMed  Google Scholar 

  45. Shin SW. The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean J Radiol. 2009;10:425–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Favelier S, et al. Lipiodol trans-arterial chemoembolization of hepatocellular carcinoma with idarubicin: first experience. Cardiovasc Intervent Radiol. 2013;36:1039–46.

    Article  PubMed  Google Scholar 

  47. Rios-Doria J, et al. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia New York. 2015;17:661–70.

    Article  CAS  Google Scholar 

  48. Wang Y-J, et al. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5:194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Akinwande O, et al. Is radioembolization ([90]Y) better than doxorubicin drug-eluting beads (DEBDOX) for hepatocellular carcinoma with portal vein thrombosis? A retrospective analysis. Surg Oncol. 2015;24:270–5.

    PubMed  Google Scholar 

  50. Lencioni R, et al. Transcatheter treatment of hepatocellular carcinoma with doxorubicin-loaded DC bead (DEBDOX): technical recommendations. Cardiovasc Intervent Radiol. 2012;35:980–5.

    Article  PubMed  Google Scholar 

  51. Martin R, et al. Optimal technique and response of doxorubicin beads in hepatocellular cancer: bead size and dose. Korean J Hepatol. 2011;17:51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Martin RC II, et al. Hepatic arterial infusion of doxorubicin-loaded microsphere for treatment of hepatocellular cancer: a multi-institutional registry. J Am Coll Surg. 2011;213:493–500.

    Article  PubMed  Google Scholar 

  53. Ding M, et al. Is adjuvant cellular immunotherapy essential after TACE-predominant minimally-invasive treatment for hepatocellular carcinoma? A systematic meta-analysis of studies including 1774 patients. PloS ONE. 2016;11:e0168798.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ma Y, et al. Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Exp Hematol Oncol. 2012;1:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang ZM, et al. Cytokine-induced killer cells in combination with transcatheter arterial chemoembolization and radiofrequency ablation for hepatocellular carcinoma patients. J Immunother. 2013;36:287–93.

    Article  PubMed  Google Scholar 

  56. Duffy AG, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;6:545–51.

    Article  Google Scholar 

  57. Bhangoo MS, et al. Radioembolization with yttrium-90 microspheres for patients with unresectable hepatocellular carcinoma. J Gastrointest Oncol. 2015;6:469–78.

    PubMed  PubMed Central  Google Scholar 

  58. Sato K, et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization. Cardiovasc Intervent Radiol. 2006;29:522–9.

    Article  PubMed  Google Scholar 

  59. Golden EB, et al. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. 2012;2:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nehs MA, et al. Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery. 2011;150:1032–9.

    Article  PubMed  Google Scholar 

  61. Ma Y, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol. 2010;22:113–24.

    Article  PubMed  Google Scholar 

  62. Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.

    Article  PubMed  Google Scholar 

  63. Zhang B, et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med. 2007;204:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chew V, et al. Immune activation underlies a sustained clinical response to yttrium-90 radioembolisation in hepatocellular carcinoma. Gut. 2019;68:335–46.

    Article  CAS  PubMed  Google Scholar 

  65. Giannini EG, et al. Overview of immune checkpoint inhibitors therapy for hepatocellular carcinoma, and the ITA.LI.CA cohort-derived estimate of amenability rate to immune checkpoint inhibitors in clinical practice. Cancers. 2019;11:1689.

  66. Gomaa AI, et al. Diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2009;15:1301–14.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grieb BC, et al. Evolving landscape of systemic therapy for hepatocellular carcinoma: breakthroughs, toxicities, and future frontiers. Am Soc Clin Oncol Educ Book. 2019;39:248–60.

    Article  PubMed  Google Scholar 

  68. Marrero JA, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68:723–50.

    Article  PubMed  Google Scholar 

  69. Ang C, et al. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 2019;10:4018–25.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Harding JJ, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 2019;25:2116.

    Article  CAS  PubMed  Google Scholar 

  71. Ruiz de Galarreta M, et al. β-Catenin activation promotes immune escape and resistance to anti–PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9:1124.

  72. Topalian SL, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  74. Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bauch K, et al. Value of sonography in assessing nodular changes of the thyroid in an endemic goiter area. Z Gesamte Inn Med. 1986;41:542–7.

    CAS  PubMed  Google Scholar 

  76. Connelly TG, Goldstein AM, Yamada T. Influence of hypophysectomy and starvation on blood glucose levels in the newt, Notophthalmus viridescens. J Exp Zool. 1974;188:367–73.

    Article  CAS  PubMed  Google Scholar 

  77. Rizvi NA, et al. Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Riedl W, et al. Zika virus NS3 mimics a cellular 14-3-3-binding motif to antagonize RIG-I- and MDA5-mediated innate immunity. Cell Host Microbe. 2019;26:493–503.e6.

    Google Scholar 

  79. Zhang K, et al. The comparison of tumor mutational burden (TMB) in patients of early- and late-stage lung adenocarcinoma in China. J Clin Oncol. 2018;36:8520.

    Article  Google Scholar 

  80. Neureiter D, et al. Hepatocellular carcinoma: therapeutic advances in signaling, epigenetic, and immune targets. World J Gastroenterol. 2019;25:3136–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meyer MA, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun. 2018;9:1250.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ng CKY, et al. Circulating cell-free DNA in hepatocellular carcinoma: current insights and outlook. Front Med. 2018;5:78.

    Article  Google Scholar 

  83. Jiang P, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A. 2015; 112:E1317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chan KC, et al. Cancer genome-scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem. 2013;59:211–24.

    Article  CAS  PubMed  Google Scholar 

  85. Ng CKY, et al. Genetic profiling using plasma-derived cell-free DNA in therapy-naive hepatocellular carcinoma patients: a pilot study. Ann Oncol. 2018;29:1286–91.

    Article  CAS  PubMed  Google Scholar 

  86. Friemel J, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21:1951–61.

    Article  CAS  PubMed  Google Scholar 

  87. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  88. Miller A, et al. Reporting results of cancer treatment. Cancer. 1981;47:207–14.

    Article  CAS  PubMed  Google Scholar 

  89. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  90. Xu W, et al. Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives. Ther Adv Med Oncol. 2019;11:1758835919862692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suzuki C, et al. Radiologic measurements of tumor response to treatment: practical approaches and limitations. RadioGraphics. 2008;28:329–44.

    Article  PubMed  Google Scholar 

  92. Seymour L, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  PubMed  Google Scholar 

  94. Llovet JM, et al. Design and end points of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:698–711.

    Article  PubMed  Google Scholar 

  95. Shim JH, et al. Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology. 2012;262:708–18.

    Article  PubMed  Google Scholar 

  96. Kim BK, et al. Prospective comparison of prognostic values of modified Response Evaluation Criteria in Solid Tumours with European Association for the Study of the Liver criteria in hepatocellular carcinoma following chemoembolisation. Eur J Cancer. 2013;49:826–34.

    Article  PubMed  Google Scholar 

  97. Gillmore R, et al. EASL and mRECIST responses are independent prognostic factors for survival in hepatocellular cancer patients treated with transarterial embolization. J Hepatol. 2011;55:1309–16.

    Article  PubMed  Google Scholar 

  98. Hussein RS, Tantawy W, Abbas YA. MRI assessment of hepatocellular carcinoma after locoregional therapy: insights into. Imaging. 2019;10:8.

    Google Scholar 

  99. European Association for the Study of the Liver. Electronic address, e.e.e. and L. European Association for the Study of the, EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

  100. Roberts LR, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology. 2018;67:401–21.

    Article  PubMed  Google Scholar 

  101. Kloeckner R, et al. MDCT versus MRI assessment of tumor response after transarterial chemoembolization for the treatment of hepatocellular carcinoma. Cardiovsc Intervent Radiol. 2010;33:532–40.

    Article  Google Scholar 

  102. Yaghmai V, et al. Imaging assessment of hepatocellular carcinoma response to locoregional and systemic therapy. Am J Roentgenol. 2013;201:80–96.

    Article  Google Scholar 

  103. Rimola J. Heterogeneity of hepatocellular carcinoma on imaging. Semin Liver Dis. 2020;40:61–9.

  104. Iqbal SI, Stuart KE. Assessment of tumor response in patients receiving systemic and nonsurgical locoregional treatment of hepatocellular cancer. UpToDate. Waltham: UpToDate, 2018.

  105. Hayano K, Lee SH, Sahani DV. Imaging for assessment of treatment response in hepatocellular carcinoma: current update. Indian J Radiol Imaging. 2015;25:121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Morsbach F, et al. Computed tomographic perfusion imaging for the prediction of response and survival to transarterial radioembolization of liver metastases. Invest Radiol. 2013;48:787–94.

    Article  PubMed  Google Scholar 

  107. Chen G, et al. Computed tomography perfusion in evaluating the therapeutic effect of transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2008;14:5738–43.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Popovic P, et al. Computed tomographic perfusion imaging for the prediction of response and survival to transarterial chemoembolization of hepatocellular carcinoma. Radiol Oncol. 2017;52:14–22.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Su T-H, et al. Early response of hepatocellular carcinoma to chemoembolization: volume-computed tomography liver perfusion imaging as a short-term response predictor. J Comput Assist Tomogr. 2017;41:315–20.

    Article  PubMed  Google Scholar 

  110. Tamandl D, et al. Early response evaluation using CT perfusion one day after transarterial chemoembolization for HCC predicts treatment response and long-term disease control. Eur J Radiol. 2017;90:73–80.

    Article  PubMed  Google Scholar 

  111. Loffroy R, et al. Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology. 2013;266: 636–48.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Altenbernd J, et al. Treatment response after radioembolisation in patients with hepatocellular carcinoma: an evaluation with dual-energy computed tomography. Eur J Radiol Open. 2016;3:230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Coenegrachts K, et al. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T2-weighted turbo spin echo techniques. Br J Radiol. 2007;80:524–31.

    Article  CAS  PubMed  Google Scholar 

  114. Piana G, et al. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol. 2011;55:126–32.

    Article  PubMed  Google Scholar 

  115. Kamel IR, et al. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology. 2009;250:466–73.

    Article  PubMed  Google Scholar 

  116. Yu JI, et al. The role of diffusion-weighted magnetic resonance imaging in the treatment response evaluation of hepatocellular carcinoma patients treated with radiation therapy. Int J Radiat Oncol Biol Phys. 2014;89:814–21.

    Article  PubMed  Google Scholar 

  117. Schraml C, et al. Navigator respiratory‐triggered diffusion‐weighted imaging in the follow-up after hepatic radiofrequency ablation: initial results. J Magnet Resonance Imaging. 2009;29:1308–16.

    Article  Google Scholar 

  118. Taouli B, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. Am J Roentgenol. 2013;201:795–800.

    Article  Google Scholar 

  119. Su Y, et al. The efficacy and safety of dendritic cells co-cultured with cytokine-induced killer cell therapy in combination with TACE-predominant minimally invasive treatment for hepatocellular carcinoma: a meta-analysis. Clin Lab. 2016;62:599–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. G. Martin II MD, PhD.

Ethics declarations

Disclosure

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woeste, M.R., Geller, A.E., Martin, R.C.G. et al. Optimizing the Combination of Immunotherapy and Trans-Arterial Locoregional Therapy for Stages B and C Hepatocellular Cancer. Ann Surg Oncol 28, 1499–1510 (2021). https://doi.org/10.1245/s10434-020-09414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-020-09414-5

Navigation