Skip to main content

Advertisement

Log in

A Clinicopathological and Prognostic Analysis of PD-L2 Expression in Surgically Resected Primary Lung Squamous Cell Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Immunotherapy targeting programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) has shown dramatic therapeutic effects for lung squamous cell carcinoma (SCC), and PD-L1 expression has been shown not only to be a predictive biomarker for response to immunotherapy but also a prognostic factor for lung SCC. However, the clinical significance of programmed death-ligand 2 (PD-L2), another PD-1 ligand, remains unclear. Therefore, we analyzed PD-L2 expression by immunohistochemistry in surgically resected primary lung SCC.

Patients and Methods

PD-L1 and PD-L2 expression on tumor cells were analyzed in 211 primary lung SCC specimens by immunohistochemistry. Additionally, numbers of CD3+, CD4+, and CD8+ tumor-infiltrating lymphocytes were also examined.

Results

The rates of positive PD-L2 expression were 77.3% and 67.3% using 5% and 10% cut-off values, respectively. Low PD-L2 expression on tumor cells was statistically associated with histological type (non-keratinizing/keratinizing) and lymphatic invasion. PD-L2-positive patients had significantly longer postoperative survival time (log-rank test; p = 0.0170 at 5% cut-off and p = 0.0500 at 10% cut-off). Furthermore, survival analysis according to PD-L1 and PD-L2 expression revealed that PD-L1-positive and PD-L2-negative patients had the most unfavorable prognosis.

Conclusions

PD-L2 protein expression was associated with prognosis in primary lung SCC patients. PD-L2 expression might be a potential biomarker for response to PD-1/PD-L1-targeted immunotherapy, which should be investigated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res. 2012;18(9):2443–51.

    Article  CAS  PubMed  Google Scholar 

  3. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  6. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  7. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ishida M, Iwai Y, Tanaka Y, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett. 2002;84(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  9. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calles A, Liao X, Sholl LM, et al. Expression of PD-1 and its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol. 2015;10(12):1726–35.

    Article  CAS  PubMed  Google Scholar 

  11. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  12. Yearley JH, Gibson C, Yu N, et al. PD-L2 Expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. 2017;23(12):3158–67.

    Article  CAS  PubMed  Google Scholar 

  13. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sacher AG, Gandhi L. Biomarkers for the Clinical Use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol. 2016;2(9):1217–22.

    Article  PubMed  Google Scholar 

  15. Takada K, Okamoto T, Shoji F, et al. Clinical significance of PD-L1 protein expression in surgically resected primary lung adenocarcinoma. J Thorac Oncol. 2016;11(11):1879–90.

    Article  PubMed  Google Scholar 

  16. Takada K, Okamoto T, Toyokawa G, et al. The expression of PD-L1 protein as a prognostic factor in lung squamous cell carcinoma. Lung Cancer. 2017;104:7–15.

    Article  PubMed  Google Scholar 

  17. Kim MY, Koh J, Kim S, Go H, Jeon YK, Chung DH. Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer. 2015;88(1):24–33.

    Article  PubMed  Google Scholar 

  18. Chen Z, Mei J, Liu L, et al. PD-L1 expression is associated with advanced non-small cell lung cancer. Oncol Lett. 2016;12(2):921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arrieta O, Montes-Servin E, Hernandez-Martinez JM, et al. Expression of PD-1/PD-L1 and PD-L2 in peripheral T-cells from non-small cell lung cancer patients. Oncotarget. 2017;8(60):101994–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goldstraw P, Crowley J, Chansky K, et al. The IASLC Lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.

    Article  PubMed  Google Scholar 

  21. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–71.

    Article  CAS  PubMed  Google Scholar 

  22. Mansfield AS, Aubry MC, Moser JC, et al. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 2016;27(10):1953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tokito T, Azuma K, Kawahara A, et al. Predictive relevance of PD-L1 expression combined with CD8 + TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur J Cancer. 2016;55:7–14.

    Article  CAS  PubMed  Google Scholar 

  24. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    Article  CAS  PubMed  Google Scholar 

  25. Azuma K, Ota K, Kawahara A, et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 2014;25(10):1935–40.

    Article  CAS  PubMed  Google Scholar 

  26. Ota K, Azuma K, Kawahara A, et al. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung Cancer. Clin Cancer Res. 2015;21(17):4014–21.

    Article  CAS  PubMed  Google Scholar 

  27. Shibahara D, Tanaka K, Iwama E, et al. Intrinsic and Extrinsic regulation of PD-L2 expression in oncogene-driven non-small cell lung cancer. J Thorac Oncol. 2018;13(7):926–37.

    Article  PubMed  Google Scholar 

  28. Youngnak P, Kozono Y, Kozono H, et al. Differential binding properties of B7-H1 and B7-DC to programmed death-1. Biochem Biophys Res Commun. 2003;307(3):672–7.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng X, Veverka V, Radhakrishnan A, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. 2013;288(17):11771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA. 2003;100(9):5336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A. Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev. 2006;17(3):173–88.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Wang L, Li Y, et al. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. OncoTargets Ther. 2014;7:567–73.

    Article  CAS  Google Scholar 

  33. Hobo W, Maas F, Adisty N, et al. siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8 + T cells. Blood. 2010;116(22):4501–11.

    Article  CAS  PubMed  Google Scholar 

  34. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66.

    Article  CAS  PubMed  Google Scholar 

  35. Akbari O, Stock P, Singh AK, et al. PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunol. 2010;3(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  36. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  37. Takamori S, Takada K, Toyokawa G, et al. PD-L2 expression as a potential predictive biomarker for the response to anti-PD-1 drugs in patients with non-small cell lung cancer. Anticancer Res. 2018;38(10):5897–901.

    Article  CAS  PubMed  Google Scholar 

  38. Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22.

    Article  PubMed  Google Scholar 

  39. Rimm DL, Han G, Taube JM, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 Expression in non-small cell lung cancer. JAMA Oncol. 2017;3(8):1051–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank James P. Mahaffey, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Takada MD, PhD.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (DOCX 22 kb)

Supplementary material 3 (DOCX 25 kb)

Supplementary material 4 (DOCX 23 kb)

Supplementary material 5 (DOCX 24 kb)

10434_2019_7257_MOESM6_ESM.tif

Supplementary material 6 (TIFF 9525 kb). Supplementary Figure 1 A receiver operating characteristic curve in the analysis of enrolled patients. 5 year-survival was used as the state variable.

10434_2019_7257_MOESM7_ESM.tif

Supplementary material 7 (TIFF 18325 kb). Supplementary Figure 2. Representative images of PD-L1, PD-L2, CD3, CD4, and CD8 expression in lung squamous cell carcinoma specimens. Negative (A) and positive (B) PD-L1 staining, and negative (C) and positive (D) PD-L2 staining, which were detected on the membrane of tumor cells. Low (E, G, I) and high (F, H, J) numbers of CD3- (E, F), CD4- (G, H), and CD8-positive (I, J) tumor infiltrating lymphocytes. PD-L1, programmed death-ligand 1; PD-L2, programmed death-ligand 2; CD3, cluster of differentiation 3; CD4, cluster of differentiation 4; CD8, cluster of differentiation 8. Scale bar: 100 μm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, T., Takada, K., Azuma, K. et al. A Clinicopathological and Prognostic Analysis of PD-L2 Expression in Surgically Resected Primary Lung Squamous Cell Carcinoma. Ann Surg Oncol 26, 1925–1933 (2019). https://doi.org/10.1245/s10434-019-07257-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-019-07257-3

Navigation