Skip to main content

Advertisement

Log in

Preoperative Therapy for Gastric Adenocarcinoma is Protective for Poor Oncologic Outcomes in Patients with Complications After Gastrectomy

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Postoperative complications (POC) are associated with poor oncologic outcomes in gastric cancer. We sought to evaluate the impact of POC on survival in patients with gastric cancer treated with upfront surgery (UpSurg) versus those treated with preoperative therapy (PreT).

Methods

We analyzed data from a prospectively maintained database of patients who had undergone resection of their gastric cancer at our institution. Patients with T1N0 or M1 lesions, recurrent disease, and mortality within 90 days were excluded. Survival was compared between patients with and without POC in the UpSurg and PreT groups. Cox regression analyses were used to examine factors associated with overall survival (OS) and disease-free survival (DFS).

Results

A total of 421 patients underwent resection of gastric cancer: 30% underwent upfront surgery, and 51% had a POC. Among patients who had POCs, 71% were infectious and 53% were Clavien–Dindo grade III or IV. UpSurg patients with a POC had shorter OS (5-year, 47 vs. 85%; p < 0.001) and DFS (5-year, 46 vs. 76%; p < 0.001) than those without a POC. In contrast, there was no difference in OS (5-year, 57 vs. 63%; p = 0.77) and DFS (5-year, 52 vs. 52%; p = 0.52) between PreT patients with and without POC. Multivariable Cox regression model demonstrated that a POC in UpSurg patients had significant impact on DFS (2.6 [95% confidence interval (CI) 1.48–4.74]), whereas it did not in PreT patients (0.9 [95% CI 0.70–1.33]).

Conclusions

The use of preoperative therapy negated the impact of POCs on OS and DFS in patients undergoing resection for gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Howlader N NA, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) SEER cancer statistics review, 1975–2014. 2017; https://seer.cancer.gov/data/. Accessed 29 Jan 2018.

  2. Macdonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345(10):725–30.

    Article  PubMed  CAS  Google Scholar 

  3. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  4. Noh SH, Park SR, Yang HK, et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(12):1389–96.

    Article  PubMed  CAS  Google Scholar 

  5. Ychou M, Boige V, Pignon JP, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol. 2011;29(13):1715–21.

    Article  PubMed  CAS  Google Scholar 

  6. Sasako M, Sakuramoto S, Katai H, et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011;29(33):4387–93.

    Article  PubMed  CAS  Google Scholar 

  7. Sakuramoto S, Sasako M, Yamaguchi T, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med. 2007;357(18):1810–20.

    Article  PubMed  CAS  Google Scholar 

  8. Bang YJ, Kim YW, Yang HK, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012;379(9813):315–21.

    Article  PubMed  CAS  Google Scholar 

  9. Lee J, Lim DH, Kim S, et al. Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J Clin Oncol. 2012;30(3):268–73.

    Article  PubMed  CAS  Google Scholar 

  10. Park SH, Sohn TS, Lee J, et al. Phase III trial to compare adjuvant chemotherapy with capecitabine and cisplatin versus concurrent chemoradiotherapy in gastric cancer: final report of the adjuvant chemoradiotherapy in stomach tumors trial, including survival and subset analyses. J Clin Oncol. 2015;33(28):3130–6.

    Article  PubMed  CAS  Google Scholar 

  11. Cuschieri A, Fayers P, Fielding J, et al. Postoperative morbidity and mortality after D1 and D2 resections for gastric cancer: preliminary results of the MRC randomised controlled surgical trial. The Surgical Cooperative Group. Lancet. 1996;347(9007):995–9.

    PubMed  CAS  Google Scholar 

  12. Bonenkamp JJ, Songun I, Hermans J, et al. Randomised comparison of morbidity after D1 and D2 dissection for gastric cancer in 996 Dutch patients. Lancet. 1995;345(8952):745–8.

    Article  PubMed  CAS  Google Scholar 

  13. Strong VE, Devaud N, Allen PJ, Gonen M, Brennan MF, Coit D. Laparoscopic versus open subtotal gastrectomy for adenocarcinoma: a case-control study. Ann Surg Oncol. 2009;16(6):1507–13.

    Article  PubMed  Google Scholar 

  14. Pucher PH, Aggarwal R, Qurashi M, Darzi A. Meta-analysis of the effect of postoperative in-hospital morbidity on long-term patient survival. Br J Surg. 2014;101(12):1499–508.

    Article  PubMed  CAS  Google Scholar 

  15. Jin LX, Sanford DE, Squires MH, 3rd, et al. Interaction of postoperative morbidity and receipt of adjuvant therapy on long-term survival after resection for gastric adenocarcinoma: results from the U.S. Gastric Cancer Collaborative. Ann Surg Oncol. 2016;23(8):2398–408.

    Article  PubMed  Google Scholar 

  16. Tsujimoto H, Ichikura T, Ono S, et al. Impact of postoperative infection on long-term survival after potentially curative resection for gastric cancer. Ann Surg Oncol. 2009;16(2):311–8.

    Article  PubMed  Google Scholar 

  17. Kubota T, Hiki N, Sano T, et al. Prognostic significance of complications after curative surgery for gastric cancer. Ann Surg Oncol. 2014;21(3):891–898.

    Article  PubMed  Google Scholar 

  18. McSorley ST, Horgan PG, McMillan DC. The impact of the type and severity of postoperative complications on long-term outcomes following surgery for colorectal cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2016;97:168–77.

    Article  PubMed  Google Scholar 

  19. Jiang N, Deng JY, Ding XW, et al. Effect of complication grade on survival following curative gastrectomy for carcinoma. World J Gastroenterol. 2014;20(25):8244–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tokunaga M, Tanizawa Y, Bando E, Kawamura T, Terashima M. Poor survival rate in patients with postoperative intra-abdominal infectious complications following curative gastrectomy for gastric cancer. Ann Surg Oncol. 2013;20(5):1575–83.

    Article  PubMed  Google Scholar 

  21. Merkow RP, Bentrem DJ, Mulcahy MF, et al. Effect of postoperative complications on adjuvant chemotherapy use for stage III colon cancer. Ann Surg. 2013;258(6):847–53.

    Article  PubMed  Google Scholar 

  22. Merkow RP, Bilimoria KY, Tomlinson JS, et al. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann Surg. 2014;260(2):372–7.

    Article  PubMed  Google Scholar 

  23. Mota JM, Leite CA, Souza LE, et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice. Cancer Immunol Res. 2016;4(4):312–22.

    Article  PubMed  CAS  Google Scholar 

  24. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cavassani KA, Carson WFt, Moreira AP, et al. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood. 2010;115(22):4403–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. DerHagopian RP, Sugarbaker EV, Ketcham A. Inflammatory oncotaxis. JAMA. 1978;240(4):374–5.

    Article  PubMed  CAS  Google Scholar 

  27. Ajani JA, Winter K, Okawara GS, et al. Phase II trial of preoperative chemoradiation in patients with localized gastric adenocarcinoma (RTOG 9904): quality of combined modality therapy and pathologic response. J Clin Oncol. 2006;24(24):3953–8.

    Article  PubMed  CAS  Google Scholar 

  28. Tzeng CW, Tran Cao HS, Lee JE, et al. Treatment sequencing for resectable pancreatic cancer: influence of early metastases and surgical complications on multimodality therapy completion and survival. J Gastrointest Surg. 2014;18(1):16–24 (discussion 24-5).

  29. Bohm S, Montfort A, Pearce OM, et al. Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res. 2016;22(12):3025–36.

    Article  PubMed  CAS  Google Scholar 

  30. Biziota E, Mavroeidis L, Hatzimichael E, Pappas P. Metronomic chemotherapy: a potent macerator of cancer by inducing angiogenesis suppression and antitumor immune activation. Cancer Lett. 2017;400:243–51.

    Article  PubMed  CAS  Google Scholar 

  31. Eguchi T, Kodera Y, Nakanishi H, et al. The effect of chemotherapy against micrometastases and isolated tumor cells in lymph nodes: an in vivo study. In vivo (Athens, Greece). 2008;22(6):707–12.

  32. Edge SB BD, Compton CC, Fritz AG, Greene FL, Trotti A AJCC cancer staging manual, 7th edn. New York: Springer; 2010.

    Google Scholar 

  33. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer. 2011;14(2):113–23.

  34. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Artinyan A, Orcutt ST, Anaya DA, Richardson P, Chen GJ, Berger DH. Infectious postoperative complications decrease long-term survival in patients undergoing curative surgery for colorectal cancer: a study of 12,075 patients. Ann Surg. 2015;261(3):497–505.

    Article  PubMed  Google Scholar 

  36. Le AT, Huang B, Hnoosh D, et al. Effect of complications on oncologic outcomes after pancreaticoduodenectomy for pancreatic cancer. J Surg Res. 2017;214:1–8.

    Article  PubMed  Google Scholar 

  37. Schneider MA, Eshmuminov D, Lehmann K. Major postoperative complications are a risk factor for impaired survival after CRS/HIPEC. Ann Surg Oncol. 2017;24(8):2224–32.

    Article  PubMed  Google Scholar 

  38. McSorley ST, Watt DG, Horgan PG, McMillan DC. Postoperative systemic inflammatory response, complication severity, and survival following surgery for colorectal cancer. Ann Surg Oncol. 2016;23(9):2832–40.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lim SB, Yu CS, Kim CW, Yoon YS, Park IJ, Kim JC. The types of anastomotic leakage that develop following anterior resection for rectal cancer demonstrate distinct characteristics and oncologic outcomes. Int J Colorectal Dis. 2015;30(11):1533–40.

    Article  PubMed  Google Scholar 

  40. Papenfuss WA, Kukar M, Oxenberg J, et al. Morbidity and mortality associated with gastrectomy for gastric cancer. Ann Surg Oncol. 2014;21(9):3008–14.

    Article  PubMed  Google Scholar 

  41. Badgwell B, Ajani J, Blum M, et al. Postoperative morbidity and mortality rates are not increased for patients with gastric and gastroesophageal cancer who undergo preoperative chemoradiation therapy. Ann Surg Oncol. 2016;23(1):156–62.

    Article  PubMed  Google Scholar 

  42. Marrelli D, Pedrazzani C, Neri A, et al. Complications after extended (D2) and superextended (D3) lymphadenectomy for gastric cancer: analysis of potential risk factors. Ann Surg Oncol. 2007;14(1):25–33.

    Article  PubMed  Google Scholar 

  43. Mita K, Ito H, Hashimoto M, et al. Postoperative complications and survival after gastric cancer surgery in patients older than 80 years of age. J Gastrointest Surg. 2013;17(12):2067–73.

    Article  PubMed  Google Scholar 

  44. Oh SY, Kwon S, Lee KG, et al. Outcomes of minimally invasive surgery for early gastric cancer are comparable with those for open surgery: analysis of 1,013 minimally invasive surgeries at a single institution. Surg Endosc. 2014;28(3):789–95.

    Article  PubMed  Google Scholar 

  45. Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Investig. 2013.

  46. Ashizawa T, Okada R, Suzuki Y, et al. Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor. Gastric Cancer. 2005;8(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  47. Lee JW, Shahzad MM, Lin YG, et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clin Cancer Res. 2009;15(8):2695–702.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eto K, Hiki N, Kumagai K, et al. Prophylactic effect of neoadjuvant chemotherapy in gastric cancer patients with postoperative complications. Gastric Cancer. 2017.

  49. Matsumoto Y, Tsujimoto H, Ono S, et al. Abdominal infection suppresses the number and activity of intrahepatic natural killer cells and promotes tumor growth in a murine liver metastasis model. Ann Surg Oncol. 2016;23 Suppl 2:S257–65.

    Article  PubMed  Google Scholar 

  50. Frese-Schaper M, Keil A, Yagita H, et al. Influence of natural killer cells and perforinmediated cytolysis on the development of chemically induced lung cancer in A/J mice. Cancer Immunol Immunother. 2014;63(6):571–80.

    Article  PubMed  CAS  Google Scholar 

  51. Jaime-Ramirez AC, Mundy-Bosse BL, Kondadasula S, et al. IL-12 enhances the antitumor actions of trastuzumab via NK cell IFN-gamma production. J Immunol. 2011;186(6):3401–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Indrova M, Simova J, Bieblova J, Bubenik J, Reinis M. NK1.1 + cells are important for the development of protective immunity against MHC I-deficient, HPV16-associated tumours. Oncol Rep. 2011;25(1):281–8.

    PubMed  CAS  Google Scholar 

  53. Watt DG, McSorley ST, Park JH, Horgan PG, McMillan DC. A postoperative systemic inflammation score predicts short- and long-term outcomes in patients undergoing surgery for colorectal cancer. Ann Surg Oncol. 2017;24(4):1100–9.

    Article  PubMed  Google Scholar 

  54. Watt DG, Horgan PG, McMillan DC. Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: a systematic review. Surgery. 2015;157(2):362–80.

    Article  PubMed  Google Scholar 

  55. Binkowska AM, Michalak G, Slotwinski R. Current views on the mechanisms of immune responses to trauma and infection. Cent Eur J Immunol. 2015;40(2):206–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Najmeh S, Cools-Lartigue J, Rayes RF, et al. Neutrophil extracellular traps sequester circulating tumor cells via beta1-integrin mediated interactions. Int J Cancer. 2017;140(10):2321–30.

    Article  PubMed  CAS  Google Scholar 

  57. Cata JP, Bauer M, Sokari T, et al. Effects of surgery, general anesthesia, and perioperative epidural analgesia on the immune function of patients with non-small cell lung cancer. J Clin Anesth. 2013;25(4):255–62.

    Article  PubMed  CAS  Google Scholar 

  58. Salvans S, Mayol X, Alonso S, et al. Postoperative peritoneal infection enhances migration and invasion capacities of tumor cells in vitro: an insight into the association between anastomotic leak and recurrence after surgery for colorectal cancer. Ann Surg. 2014;260(5):939–43 (discussion 943-4).

  59. Yamashita S, Sheth RA, Niekamp AS, et al. Comprehensive complication index predicts cancer-specific survival after resection of colorectal metastases independent of RAS mutational status. Ann Surg. 2017;266(6):1045–54.

    Article  PubMed  Google Scholar 

  60. Tang H, Lu W, Yang Z, et al. Risk factors and long-term outcome for postoperative intra-abdominal infection after hepatectomy for hepatocellular carcinoma. Medicine. 2017;96(17):e6795.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Margonis GA, Sasaki K, Andreatos N, et al. Prognostic impact of complications after resection of early stage hepatocellular carcinoma. J Surg Oncol. 2017;115(7):791–804.

    Article  PubMed  Google Scholar 

  62. Richards CH, Leitch EF, Horgan PG, Anderson JH, McKee RF, McMillan DC. The relationship between patient physiology, the systemic inflammatory response and survival in patients undergoing curative resection of colorectal cancer. Br J Cancer. 2010;103(9):1356–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tu RH, Lin JX, Li P, et al. Prognostic significance of postoperative pneumonia after curative resection for patients with gastric cancer. Cancer Med. 2017;6(12):2757–65.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kubota T, Hiki N, Nunobe S, et al. Significance of the inflammation-based Glasgow prognostic score for short- and long-term outcomes after curative resection of gastric cancer. J Gastrointest Surg. 2012;16(11):2037–44.

    Article  PubMed  Google Scholar 

  65. Ikoma N, Lee JH, Bhutani MS, et al. Preoperative accuracy of gastric cancer staging in patient selection for preoperative therapy: race may affect accuracy of endoscopic ultrasonography. J Gastrointest Oncol. 2017;8(6):1009–17.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schuhmacher C, Gretschel S, Lordick F, et al. Neoadjuvant chemotherapy compared with surgery alone for locally advanced cancer of the stomach and cardia: European Organisation for Research and Treatment of Cancer randomized trial 40954. J Clin Oncol. 2010;28(35):5210–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Knight G, Earle CC, Cosby R, et al. Neoadjuvant or adjuvant therapy for resectable gastric cancer: a systematic review and practice guideline for North America. Gastric Cancer. 2013;16(1):28–40.

    Article  PubMed  CAS  Google Scholar 

  68. Li ZY, Shan F, Zhang LH, et al. Complications after radical gastrectomy following FOLFOX7 neoadjuvant chemotherapy for gastric cancer. World J Surg Oncol. 2011;9:110.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gallardo-Rincon D, Onate-Ocana LF, Calderillo-Ruiz G. Neoadjuvant chemotherapy with P-ELF (cisplatin, etoposide, leucovorin, 5-fluorouracil) followed by radical resection in patients with initially unresectable gastric adenocarcinoma: a phase II study. Ann Surg Oncol. 2000;7(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  70. Ikoma N, Das P, Blum M, et al. Preoperative chemoradiation therapy does not increase risk of anastomotic leak in patients with gastric cancer. Int J Radiat Oncol Biol Phys. 2017;99(3):660–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Badgwell MD, MS.

Ethics declarations

Disclosure

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, D., Ikoma, N., Chiang, YJ. et al. Preoperative Therapy for Gastric Adenocarcinoma is Protective for Poor Oncologic Outcomes in Patients with Complications After Gastrectomy. Ann Surg Oncol 25, 2720–2730 (2018). https://doi.org/10.1245/s10434-018-6638-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-018-6638-8

Keywords

Navigation