Skip to main content

Advertisement

Log in

Polymorphisms in Epithelial-Mesenchymal Transition-Related Genes and the Prognosis of Surgically Treated Non-small Cell Lung Cancer

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

This study was conducted to determine whether single-nucleotide polymorphisms (SNPs) in EMT-related genes may influence the prognosis of NSCLC after surgery.

Methods

There were 88 SNPs in EMT-related genes evaluated in a discovery set of 376 patients who underwent curative surgery for NSCLC. Significantly, 14 SNPs were evaluated in a validation set of 428 patients. Luciferase assay and RT-PCR were conducted to examine functional relevance of polymorphisms.

Results

Fourteen SNPs that were associated with survival outcomes in a discovery set were selected for validation. Among those, two SNPs (FOXF2 rs1711972A>C and HEYL rs784621G>A) were replicated in a validation study. In combined analysis, FOXF2 rs1711972 AC+CC genotype was associated with significantly better overall survival (OS) and disease-free survival (DFS) compared with AA genotype (adjusted hazard ratio [aHR] for OS = 0.67, 95% confidence interval [CI] 0.51–0.88, P = 0.004; and aHR for DFS = 0.77, 95% CI 0.62–0.95, P = 0.01). HEYL rs784621 AA genotype exhibited a significantly worse OS compared with GG+GA genotype (aHR for OS = 2.65, 95% CI 1.63–4.31, P = 8 × 10−5). FOXF2 rs1711972C allele had a significantly increased promoter activity than rs1711972A allele (P = 0.01), and HEYL rs784621A allele had a significantly lower promoter activity than rs784621G allele (P = 0.004). FOXF2 rs1711972A>C was significantly associated with increased FOXF2 mRNA expression.

Conclusions

FOXF2 rs1711972A>C and HEYL rs784621G>A were associated with survival outcomes of surgically treated NSCLC. These SNPs may help to identify patients at high risk of poor disease outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  2. Lackey A, Donington JS. Surgical management of lung cancer. Semin Intervent Radiol. 2013;30(2):133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Leyn P, Decker G. [Surgical treatment of non-small cell lung cancer]. Rev Mal Respir. 2004;21(5 Pt 1):971–82.

    Article  PubMed  Google Scholar 

  4. Dominioni L, Imperatori A, Rovera F, Ochetti A, Torrigiotti G, Paolucci M. Stage I nonsmall cell lung carcinoma: analysis of survival and implications for screening. Cancer. 2000;89(11 Suppl):2334–44.

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  6. Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis. 2010;2(3):154–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller YE. Pathogenesis of lung cancer: 100 year report. Am J Respir Cell Mol Biol. 2005;33(3):216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coate LE, John T, Tsao MS, Shepherd FA. Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncol. 2009;10(10):1001–10.

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119(6):1420–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  11. Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–99.

    Article  CAS  PubMed  Google Scholar 

  12. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15(6):740–46.

    Article  CAS  PubMed  Google Scholar 

  13. Groome PA, Bolejack V, Crowley JJ, et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):694–705.

    Article  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–08.

    Article  CAS  PubMed  Google Scholar 

  15. Chanock SJ, Manolio T, Boehnke M, et al. Replicating genotype-phenotype associations. Nature. 2007;447(7145):655–60.

    Article  CAS  PubMed  Google Scholar 

  16. Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4(11):850–60.

    Article  CAS  PubMed  Google Scholar 

  17. Cai J, Tian AX, Wang QS, et al. FOXF2 suppresses the FOXC2-mediated epithelial-mesenchymal transition and multidrug resistance of basal-like breast cancer. Cancer Lett. 2015;367(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  18. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007;7(11):847–59.

    Article  CAS  PubMed  Google Scholar 

  19. Katoh M, Igarashi M, Fukuda H, Nakagama H. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  20. Ormestad M, Astorga J, Landgren H, et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development. 2006;133(5):833–43.

    Article  CAS  PubMed  Google Scholar 

  21. Aitola M, Carlsson P, Mahlapuu M, Enerback S, Pelto-Huikko M. Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Dev Dyn. 2000;218(1):136–49.

    Article  CAS  PubMed  Google Scholar 

  22. Shi Z, Liu J, Yu X, et al. Loss of FOXF2 Expression Predicts Poor Prognosis in Hepatocellular Carcinoma Patients. Ann Surg Oncol. 2016;23(1):211–17.

    Article  PubMed  Google Scholar 

  23. Zheng YZ, Wen J, Cao X, et al. Decreased mRNA expression of transcription factor forkhead box F2 is an indicator of poor prognosis in patients with resected esophageal squamous cell carcinoma. Mol Clin Oncol. 2015;3(3):713–19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang QS, Kong PZ, Li XQ, Yang F, Feng YM. FOXF2 deficiency promotes epithelial-mesenchymal transition and metastasis of basal-like breast cancer. Breast Cancer Res. 2015;17:30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hirata H, Ueno K, Shahryari V, et al. MicroRNA-182-5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PloS ONE. 2013;8(1):e55502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koskensalo S, Mrena J, Wiksten JP, et al. MMP-7 overexpression is an independent prognostic marker in gastric cancer. Tumour Biol. 2010;31(3):149–55.

    Article  CAS  PubMed  Google Scholar 

  27. Gu ZD, Li JY, Li M, et al. Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am J Gastroenterol. 2005;100(8):1835–43.

    Article  CAS  PubMed  Google Scholar 

  28. Shapiro M, Akiri G, Chin C, et al. Wnt pathway activation predicts increased risk of tumor recurrence in patients with stage I nonsmall cell lung cancer. Ann Surg. 2013;257(3):548–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamamoto H, Oue N, Sato A, et al. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene. 2010;29(14):2036–46.

    Article  CAS  PubMed  Google Scholar 

  30. Lo PK, Lee JS, Liang X, Sukumar S. The dual role of FOXF2 in regulation of DNA replication and the epithelial-mesenchymal transition in breast cancer progression. Cell Signal. 2016;28(10):1502–19.

    Article  CAS  PubMed  Google Scholar 

  31. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194(3):237–55.

    Article  CAS  PubMed  Google Scholar 

  32. Lavery DN, Villaronga MA, Walker MM, Patel A, Belandia B, Bevan CL. Repression of androgen receptor activity by HEYL, a third member of the Hairy/Enhancer-of-split-related family of Notch effectors. J Biol Chem. 2011;286(20):17796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 2013;6:1249–59.

    PubMed  PubMed Central  Google Scholar 

  34. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338–51.

    Article  CAS  PubMed  Google Scholar 

  35. Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014;141(2):140–49.

    Article  CAS  PubMed  Google Scholar 

  36. Yen WC, Fischer MM, Axelrod F, et al. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 2015;21(9):2084–95.

    Article  CAS  PubMed  Google Scholar 

  37. Yi F, Amarasinghe B, Dang TP. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer. Am J Cancer Res. 2013;3(5):490–99.

    PubMed  PubMed Central  Google Scholar 

  38. Debeb BG, Cohen EN, Boley K, et al. Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat. 2012;134(2):495–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuo KK, Jian SF, Li YJ, et al. Epigenetic inactivation of transforming growth factor-beta1 target gene HEYL, a novel tumor suppressor, is involved in the P53-induced apoptotic pathway in hepatocellular carcinoma. Hepatol Res. 2014.

Download references

Acknowledgment

This study was supported in part by the R&D program of MKE/KEIT (10040393, Development and commercialization of molecular diagnostic technologies for lung cancer through clinical validation), in part by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: HI14C0402).

Disclosures

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eung Bae Lee MD, PhD or Jae Yong Park MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 213 kb)

Supplementary material 2 (PPTX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seok, Y., Kang, HG., Lee, S.Y. et al. Polymorphisms in Epithelial-Mesenchymal Transition-Related Genes and the Prognosis of Surgically Treated Non-small Cell Lung Cancer. Ann Surg Oncol 24, 3386–3395 (2017). https://doi.org/10.1245/s10434-017-6002-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-6002-4

Keywords

Navigation