Skip to main content
Log in

A Temperature of 40 °C Appears to be a Critical Threshold for Potentiating Cytotoxic Chemotherapy In Vitro and in Peritoneal Carcinomatosis Patients Undergoing HIPEC

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Hyperthermic intraperitoneal chemotherapy (HIPEC) following cytoreductive surgery is a radical but effective treatment option for patients with peritoneal carcinomatosis (PC). Unfortunately, a standardized HIPEC protocol is missing impeding systematic comparisons with regard to minimal effective temperatures.

Objective

The purpose of the present study was to systematically analyse the precise minimal temperature needed for potentiation of chemotherapy effects in vitro and for patient survival.

Methods

We established a cell line-based model to mimic HIPEC conditions used in clinical practice, and evaluated intracellular drug concentrations and long-term survival using different temperatures ranging from 38 to 42 °C combined with cisplatin or doxorubicin. In parallel, we evaluated the temperature reached in the clinical setting by measuring inflow and outflow, as well as in two locations in the peritoneal cavity in 34 patients. Finally, we determined the influence of different HIPEC temperatures on survival.

Results

Long-term survival of cells treated with either cisplatin or doxorubicin was further improved only at temperatures above 40 °C. In patients, during HIPEC, constant temperatures were reached after 10 min in the peritoneal cavity. A temperature above 40 °C for at least 40 min was achieved in 68 % of patients over the 60 min duration of HIPEC. Importantly, we observed a significantly enhanced overall survival (OS) and progression-free survival (PFS) in those patients reaching temperatures above 40 °C.

Conclusions

Hyperthermia significantly potentiated the chemotherapy effects only at temperatures above 40 °C in vitro. Importantly, this temperature threshold was also critical for OS and PFS of PC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benedet JL, Bender H, Jones H, Ngan HY, Pecorelli S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet. 2000;70(2):209–262.

    Article  PubMed  CAS  Google Scholar 

  2. Koppe MJ, Boerman OC, Oyen WJG, Bleichrodt RP. Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg. 2006;243(2):212–222.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15(9):2426–2432.

    Article  PubMed  Google Scholar 

  4. Elias D, Lefevre JH, Chevalier J, et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27(5):681–685.

    Article  PubMed  Google Scholar 

  5. Chua TC, Esquivel J, Pelz JOW, Morris DL. Summary of current therapeutic options for peritoneal metastases from colorectal cancer. J Surg Oncol. 2013;107(6):566–573.

    Article  PubMed  Google Scholar 

  6. Bloemendaal ALA, Verwaal VJ, van Ruth S, Boot H, Zoetmulder FAN. Conventional surgery and systemic chemotherapy for peritoneal carcinomatosis of colorectal origin: a prospective study. Eur J Surg Oncol. 2005;31(10):1145–1151.

    Article  PubMed  CAS  Google Scholar 

  7. Glehen O, Cotte E, Schreiber V, Sayag-Beaujard AC, Vignal J, Gilly FN. Intraperitoneal chemohyperthermia and attempted cytoreductive surgery in patients with peritoneal carcinomatosis of colorectal origin. Br J Surg. 2004;91(6):747–754.

    Article  PubMed  CAS  Google Scholar 

  8. Ripley RT, Davis JL, Kemp CD, Steinberg SM, Toomey MA, Avital I. Prospective randomized trial evaluating mandatory second look surgery with HIPEC and CRS vs. standard of care in patients at high risk of developing colorectal peritoneal metastases. Trials. 2010;11:62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coccolini F, Cotte E, Glehen O, et al. Intraperitoneal chemotherapy in advanced gastric cancer. Meta-analysis of randomized trials. Eur J Surg Oncol. 2014;40(1):12–26.

    Article  PubMed  CAS  Google Scholar 

  10. Chua TC, Robertson G, Liauw W, Farrell R, Yan TD, Morris DL. Intraoperative hyperthermic intraperitoneal chemotherapy after cytoreductive surgery in ovarian cancer peritoneal carcinomatosis: systematic review of current results. J Cancer Res Clin Oncol. 2009;135(12):1637–1645.

    Article  PubMed  Google Scholar 

  11. Deraco M, Virzì S, Iusco DR, et al. Secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for recurrent epithelial ovarian cancer: a multi-institutional study. BJOG. 2012;119(7):800–809.

    Article  PubMed  CAS  Google Scholar 

  12. Bayon LG, Steiner MA, Jimenez WV, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of advanced epithelial ovarian carcinoma: upfront therapy, at first recurrence, or later? Eur J Surg Oncol. 2013;39(10):1109–1115.

    Article  Google Scholar 

  13. Spiliotis J, Halkia E, Lianos E, et al. Cytoreductive surgery and HIPEC in recurrent epithelial ovarian cancer: a prospective randomized phase III study. Ann Surg Oncol. 2015;22(5):1570–1575.

    Article  PubMed  CAS  Google Scholar 

  14. Elias D, Benizri E, Di Pietrantonio D, Menegon P, Malka D, Raynard B. Comparison of two kinds of intraperitoneal chemotherapy following complete cytoreductive surgery of colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2007;14(2):509–514.

    Article  PubMed  Google Scholar 

  15. Cashin PH, Graf W, Nygren P, Mahteme H. Intraoperative hyperthermic versus postoperative normothermic intraperitoneal chemotherapy for colonic peritoneal carcinomatosis: a case-control study. Ann Oncol. 2012;23(3):647–652.

    Article  PubMed  CAS  Google Scholar 

  16. Tentes AAK, Spiliotis ID, Korakianitis OS, Vaxevanidou A, Kyziridis D. Adjuvant perioperative intraperitoneal chemotherapy in locally advanced colorectal carcinoma: preliminary results. ISRN Surg. 2011;2011:529876.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Pelz JOW, Doerfer J, Decker M, Dimmler A, Hohenberger W, Meyer T. Hyperthermic intraperitoneal chemoperfusion (HIPEC) decrease wound strength of colonic anastomosis in a rat model. Int J Colorectal Dis. 2007;22(8):941–947.

    Article  PubMed  CAS  Google Scholar 

  18. Shimizu T, Maeta M, Koga S. Influence of local hyperthermia on the healing of small intestinal anastomoses in the rat. Br J Surg. 1991;78(1):57–59.

    Article  PubMed  CAS  Google Scholar 

  19. Lui PCW, Fan YS, Xu G, et al. Apoptotic and necrotic effects of tumour necrosis factor-alpha potentiated with hyperthermia on L929 and tumour necrosis factor-alpha-resistant L929. Int J Hyperthermia. 2010;26(6):556–564.

    Article  PubMed  CAS  Google Scholar 

  20. Roth M, Zhong J, Tamm M, Szilard J. Mesothelioma cells escape heat stress by upregulating Hsp40/Hsp70 expression via mitogen-activated protein kinases. J Biomed Biotechnol. 2009;2009:451084.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Verhulst J. Effects of bevacizumab and hyperthermia in a rodent model of hyperthermic intraperitoneal chemotherapy (HIPEC). Int J Hyperthermia. 2013;29(1):62–70.

    Article  PubMed  CAS  Google Scholar 

  22. Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–655.

    Article  PubMed  CAS  Google Scholar 

  23. Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221(1):29–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Sugarbaker PH. Cytoreductive surgery and perioperative intraperitoneal chemotherapy: a new standard of care for appendiceal mucinous tumors with peritoneal dissemination. Clin Colon Rectal Surg. 2005;18(3):204–214.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pelz JOW, Chua TC, Esquivel J, et al. Evaluation of best supportive care and systemic chemotherapy as treatment stratified according to the retrospective peritoneal surface disease severity score (PSDSS) for peritoneal carcinomatosis of colorectal origin. BMC Cancer. 2010;10:689.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–374.

    Article  PubMed  CAS  Google Scholar 

  27. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–213.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model. New York: Springer; 2000.

    Book  Google Scholar 

  29. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2005. Available at: http://www.R-project.org/.

  30. Naito K, He Q, Skog S, Tribukait B, Andersson L, Hisazumi H. Effects of adriamycin and hyperthermia on cellular uptake of [3H]thymidine and its significance for the incorporation into DNA. Int J Hyperthermia. 1989;5(3):329–340.

    Article  PubMed  CAS  Google Scholar 

  31. Istomin YP, Zhavrid EA, Alexandrova EN, Sergeyeva OP, Petrovich SV. Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Exp Oncol. 2008;30(1):56–59.

    PubMed  CAS  Google Scholar 

  32. Zanon C, Bortolini M, Chiappino I, et al. Cytoreductive surgery combined with intraperitoneal chemohyperthermia for the treatment of advanced colon cancer. World J Surg. 2006;30(11):2025–2032.

    Article  PubMed  Google Scholar 

  33. Shen P, Levine EA, Hall J, et al. Factors predicting survival after intraperitoneal hyperthermic chemotherapy with mitomycin C after cytoreductive surgery for patients with peritoneal carcinomatosis. Arch Surg. 2003;138(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  34. Kianmanesh R, Scaringi S, Sabate J-M, et al. Iterative cytoreductive surgery associated with hyperthermic intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis of colorectal origin with or without liver metastases. Ann Surg. 2007;245(4):597–603.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deraco M, Kusamura S, Virzì S, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: multi-institutional phase-II trial. Gynecol Oncol. 2011;122(2):215–220.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Grants from the Robert Bosch Foundation, Stuttgart, Germany.

Disclosure

The authors have no financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lea Schaaf Msc or Christoph Ulmer MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10434_2015_4853_MOESM1_ESM.tif

Supplementary material 1 (TIFF 6632 kb) Intracellular Doxorubicin concentrations at temperatures below and above 40 °C. Cells were treated for 1 h with 15 µM Doxorubicin at indicated temperatures. Intracellular concentration of Doxorubicin was evaluated by FACS analysis. Values reflect log2 fold changes (treated vs. control) of three independent experiments.

Supplementary material 2 (PDF 16 kb) Patient characteristics and treatment regimens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaaf, L., van der Kuip, H., Zopf, W. et al. A Temperature of 40 °C Appears to be a Critical Threshold for Potentiating Cytotoxic Chemotherapy In Vitro and in Peritoneal Carcinomatosis Patients Undergoing HIPEC. Ann Surg Oncol 22 (Suppl 3), 758–765 (2015). https://doi.org/10.1245/s10434-015-4853-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4853-0

Keywords

Navigation