Skip to main content

Advertisement

Log in

HIPEC Methodology and Regimens: The Need for an Expert Consensus

  • Peritoneal Surface Malignancy
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Hyperthermic intraperitoneal chemotherapy (HIPEC) is performed with a wide variation in methodology, drugs, and other elements vital to the procedure. Adoption of a limited number of regimens could increase the collective experience of peritoneal oncologists, make comparison between studies more meaningful, and lead to a greater acceptance of results from randomized trials. This study aimed to determine the possibility of standardizing HIPEC methodology and regimens and to identify the best method of performing such a standardization.

Methods

A critical review of preclinical and clinical studies evaluating the pharmacokinetic aspects of different HIPEC drugs and drug regimens, the impact of hyperthermia, and the efficacy of various HIPEC regimens as well as studies comparing different regimens was performed.

Results

The preclinical and clinical data were limited, and studies comparing different regimens were scarce. Many of the regimens were neither supported by preclinical rationale or data nor validated by a dose-escalating formal phase 1 trial. All the regimens were based on pharmacokinetic data and did not take chemosensitivity of peritoneal metastases into account. Personalized medicine approaches such as patient-derived tumor organoids could offer a solution to this problem, although clinical validation is likely to be challenging.

Conclusions

Apart from randomized trials, more translational research and phases 1 and 2 studies are needed. While waiting for better preclinical and clinical evidence, the best way to minimize heterogeneity is by an expert consensus that aims to identify and define a limited number of regimens for each indication and primary site. The choice of regimen then can be tailored to the patient profile and its expected toxicity and the methodology according regional factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spratt JD, Adcock RA, Muskovin M, Sherrill W, McKeown J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res. 1980;40:256–60.

    CAS  PubMed  Google Scholar 

  2. Koga S, Shimizu N, Maeta M, Hamazoe R, Izumi A. Application of heat combined with antineoplastic agent administration in the treatment of cancer (with special reference to malignancy of the digestive system). Gan To Kagaku Ryoho. 1983;10(2 Pt 2):358–65.

    CAS  PubMed  Google Scholar 

  3. Trenta P, Giovannoni S, Risi E, The CE role of systemic chemotherapy. In: Di Giorgio A, Pinto E, editors. Treatment of Peritoneal Surface Malignancies. State of the Art and Perspectives. Italia: Springer-Verlag; 2015.

    Google Scholar 

  4. Speyer JL, Myers CE. The use of peritoneal dialysis for delivery of chemotherapy to intraperitoneal malignancies. Recent Results Cancer Res. 1980;74:264–9.

    CAS  PubMed  Google Scholar 

  5. Katz MH, Barone RM. The rationale of perioperative intraperitoneal chemotherapy in the treatment of peritoneal surface malignancies. Surg Oncol Clin N Am. 2003;12:673–88.

    PubMed  Google Scholar 

  6. Dedrick RL, Myers CE, Bungay PM, De Vita Jr. VT. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62:1–11.

    CAS  PubMed  Google Scholar 

  7. Solass W, Horvath P, Struller F, Königsrainer I, Beckert S, Königsrainer A, et al. Functional vascular anatomy of the peritoneum in health and disease. Pleura Peritoneum. 2016;1:145–58. https://doi.org/10.1515/pp-2016-0015.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stein MK, Williard FW, Xiu J, Tsao MW, Martin MG, Deschner BW, et al. Comprehensive tumor profiling reveals unique molecular differences between peritoneal metastases and primary colorectal adenocarcinoma. J Surg Oncol. 2020;121:1320–8. https://doi.org/10.1002/jso.25899.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carr NJ, Bibeau F, Bradley RF, Dartigues P, Feakins RM, Geisinger KR, et al. The histopathological classification, diagnosis, and differential diagnosis of mucinous appendiceal neoplasms, appendiceal adenocarcinomas, and pseudomyxoma peritonei. Histopathology. 2017;71:847–58. https://doi.org/10.1111/his.13324.

    Article  PubMed  Google Scholar 

  10. Kemp Z, Ledermann J. Update on first-line treatment of advanced ovarian carcinoma. Int J Womens Health. 2013;5:45–51. https://doi.org/10.2147/IJWH.S30231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Böhm S, Faruqi A, Said I, et al. Chemotherapy response score: development and validation of a system to quantify histopathologic response to neoadjuvant chemotherapy in tubo-ovarian high-grade serous carcinoma. J Clin Oncol. 2015;33:2457–63. https://doi.org/10.1200/JCO.2014.60.5212.

    Article  CAS  PubMed  Google Scholar 

  12. Bartlett DL. HIPEC: the complexities of clinical trials. Ann Surg Oncol. 2008;15:1277–9. https://doi.org/10.1245/s10434-007-9768-y.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Low RN, Barone RM, Rousset P. Peritoneal MRI in patients undergoing cytoreductive surgery and HIPEC: history, clinical applications, and implementation. Eur J Surg Oncol. 2019. https://doi.org/10.1016/j.ejso.2019.02.030.

    Article  PubMed  Google Scholar 

  14. Honoré C, Gelli M, Francoual J, Benhaim L, Elias D, Goéré D. Ninety percent of the adverse outcomes occur in 10 % of patients: can we identify the populations at high risk of developing peritoneal metastases after curative surgery for colorectal cancer? Int J Hyperthermia. 2017;33:505–10. https://doi.org/10.1080/02656736.2017.1306119.

    Article  PubMed  Google Scholar 

  15. Seshadri RA, Glehen O. The role of hyperthermic intraperitoneal chemotherapy in gastric cancer. Ind J Surg Oncol. 2016;7:198–207. https://doi.org/10.1007/s13193-016-0502-8.

    Article  Google Scholar 

  16. Franko J. Therapeutic efficacy of systemic therapy for colorectal peritoneal carcinomatosis: surgeon’s perspective. Pleura Peritoneum. 2018;3:20180102. https://doi.org/10.1515/pp-2018-0102.PMID:30911652;PMCID:PMC6405010.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Franko J, Shi Q, Meyers JP, Maughan TS, Adams RA, Seymour MT, et al. Analysis and Research in Cancers of the Digestive System (ARCAD) group. Lancet Oncol. 2016;17:1709–19. https://doi.org/10.1016/S1470-2045(16)30500-9.

    Article  PubMed  Google Scholar 

  18. Bhatt A, Rousset P, Benzerdjeb N, et al. Clinical and radiologic predictors of a pathologic complete response to neoadjuvant chemotherapy (NACT) in patients undergoing cytoreductive surgery for colorectal peritoneal metastases: results of a prospective multi-center study. Ann Surg Oncol. 2020. https://doi.org/10.1245/s10434-020-09330-8.

    Article  PubMed  Google Scholar 

  19. Lemoine L, Sugarbaker P, van der Speeten K. Drugs, doses, and durations of intraperitoneal chemotherapy: standardising HIPEC and EPIC for colorectal, appendiceal, gastric, ovarian peritoneal surface malignancies and peritoneal mesothelioma. Int J Hyperthermia. 2017;33(5):582–92. https://doi.org/10.1080/02656736.2017.1291999.

    Article  CAS  PubMed  Google Scholar 

  20. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43. https://doi.org/10.1200/JCO.2003.04.187.

    Article  PubMed  Google Scholar 

  21. Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2010;28:63–8. https://doi.org/10.1200/JCO.2009.23.9285.

    Article  PubMed  Google Scholar 

  22. Huang CQ, Feng JP, Yang XJ, Li Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from colorectal cancer: a case–control study from a Chinese center. J Surg Oncol. 2014;109:730–9. https://doi.org/10.1002/jso.23545.

    Article  PubMed  Google Scholar 

  23. Bonnot PE, Piessen G, Kepenekian V, Decullier E, Pocard M, Meunier B, et al. Cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal metastases (CYTO-CHIP study): a propensity score analysis. J Clin Oncol. 2019;37:2028–40. https://doi.org/10.1200/JCO.18.01688.

    Article  CAS  PubMed  Google Scholar 

  24. van Driel WJ, Koole SN, Sikorska K, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378:230–40. https://doi.org/10.1056/NEJMoa1708618.

    Article  PubMed  Google Scholar 

  25. Kusamura S, Barretta F, Yonemura Y, Sugarbaker PH, Moran BJ, Levine EA, et al. The role of hyperthermic intraperitoneal chemotherapy in pseudomyxoma peritonei after cytoreductive surgery. JAMA Surg. 2021;156(3):e206363. https://doi.org/10.1001/jamasurg.2020.6363.

    PubMed  Google Scholar 

  26. Chua TC, Moran BJ, Sugarbaker PH, Levine EA, Glehen O, Gilly FN, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012;30:2449–56.

    PubMed  Google Scholar 

  27. Yan TD, Black D, Savady R, Sugarbaker PH. A systematic review on the efficacy of cytoreductive surgery and perioperative intraperitoneal chemotherapy for pseudomyxoma peritonei. Ann Surg Oncol. 2007;14:484–92.

    PubMed  Google Scholar 

  28. Yan TD, Deraco M, Baratti D, Sugarbaker PH, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol. 2009;27:6237–42.

    PubMed  Google Scholar 

  29. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Gynecologic Oncology Group. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354:34–43. https://doi.org/10.1056/NEJMoa052985.

    Article  CAS  PubMed  Google Scholar 

  30. Walker JL, Brady MF, Wenzel L, Fleming GF, Huang HQ, DiSilvestro PA, et al. Randomized trial of intravenous versus intraperitoneal chemotherapy plus bevacizumab in advanced ovarian carcinoma: an NRG Oncology/Gynecologic Oncology Group study. J Clin Oncol. 2019;37:1380–90. https://doi.org/10.1200/JCO.18.01568 (Erratum. In: J Clin Oncol. 2019;37:2299).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alberts DS, Liu PY, Hannigan EV, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335:1950–5.

    CAS  PubMed  Google Scholar 

  32. Markman M, Bundy BN, Alberts DS, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19:1001–7.

    CAS  PubMed  Google Scholar 

  33. Cashin PH, Mahteme H, Spång N, Syk I, Frödin JE, Torkzad M, et al. Cytoreductive surgery and intraperitoneal chemotherapy versus systemic chemotherapy for colorectal peritoneal metastases: a randomised trial. Eur J Cancer. 2016;53:155–62. https://doi.org/10.1016/j.ejca.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  34. Canbay E, Mizumoto A, Ichinose M, Ishibashi H, Sako S, Hirano M, et al. Outcome data of patients with peritoneal carcinomatosis from gastric origin treated by a strategy of bidirectional chemotherapy prior to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in a single specialized center in Japan. Ann Surg Oncol. 2014;21:1147–52.

    PubMed  Google Scholar 

  35. Alyami M, Hübner M, Grass F, Bakrin N, Villeneuve L, Laplace N, et al. Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. Lancet Oncol. 2019;20:e368–77. https://doi.org/10.1016/S1470-2045(19)30318-3.

    Article  PubMed  Google Scholar 

  36. Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288:F433–42.

    CAS  PubMed  Google Scholar 

  37. Flessner MF. Intraperitoneal drug therapy: physical and biological principles. Cancer Treat Res. 2007;134:131–52.

    CAS  PubMed  Google Scholar 

  38. Yonemura Y. Trans-lymphatic metastasis. In: Yonemura Y, editor. Atlas and principles of peritonectomy for peritoneal surface malignancy. Kyoto: NPO to support peritoneal surface malignancy; 2012. p. 188–206.

    Google Scholar 

  39. Yonemura Y, Canbay E, Endou Y, et al. Mechanisms of the formation of peritoneal surface malignancy on omental milky spots from low-grade appendiceal mucinous carcinoma. J Clin Exp Oncol. 2014;3:3. https://doi.org/10.4172/2324-9110.1000130.

    Article  Google Scholar 

  40. Solass W, Herbette A, Schwarz T, Hetzel A, Sun JS, Dutreix M, Reymond MA. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination capnoperitoneum: proof of concept. Surg Endosc. 2012;26:847–52. https://doi.org/10.1007/s00464-011-1964-y.

    Article  PubMed  Google Scholar 

  41. Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Forster E, Zieren J, Giger-Pabst U. Exploring the spatial drug distribution pattern of pressurized Intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2016;23:1220–4.

    PubMed  Google Scholar 

  42. Khosrawipour V, Khosrawipour T, Kern AJ, Osma A, Kabakci B, Diaz-Carballo D, et al. Distribution pattern and penetration depth of doxorubicin after pressurized intraperitoneal aerosol chemotherapy (PIPAC) in a postmortem swine model. J Cancer Res Clin Oncol. 2016;142:2275–80. https://doi.org/10.1007/s00432-016-2234-0.

    Article  CAS  PubMed  Google Scholar 

  43. Göhler D, Khosrawipour V, Khosrawipour T, et al. Technical description of the microinjection pump (MIP®) and granulometric characterization of the aerosol applied for pressurized intraperitoneal aerosol chemotherapy (PIPAC). Surg Endosc. 2017;31:1778–84. https://doi.org/10.1007/s00464-016-5174-5.

    Article  PubMed  Google Scholar 

  44. Alyami M, Mercier F, Siebert M, Bonnot PE, Laplace N, Villeneuve L, et al. Unresectable peritoneal metastasis treated by pressurized intraperitoneal aerosol chemotherapy (PIPAC) leading to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Eur J Surg Oncol. 2021;47:128–33. https://doi.org/10.1016/j.ejso.2019.06.028.

    Article  PubMed  Google Scholar 

  45. Valle M, Van der Speeten K, Garofalo A. Laparoscopic hyperthermic peroperative chemotherapy (HIPEC) in the management of refractory malignant ascites: a multi-institutional analysis in 52 patients. J Surg Oncol. 2009;100:331–4.

    CAS  PubMed  Google Scholar 

  46. Schneebaum S, Arnold MW, Staubus A, Young DC, Dumond D, Martin EW Jr. Intraperitoneal hyperthermic perfusion with mitomycin C for colorectal cancer with peritoneal metastases. Ann Surg Oncol. 1996;3:44–50.

    CAS  PubMed  Google Scholar 

  47. Sugarbaker PH. Normothermic intraperitoneal chemotherapy long term (NIPEC-LT) in the management of peritoneal surface malignancy: an overview. Pleura Peritoneum. 2017;22:85–93. https://doi.org/10.1515/pp-2017-0012.

    Article  Google Scholar 

  48. Yonemura Y, Sako S, Wakama S, Ishibashi H, Mizumoto A, Takao N, et al. History of peritoneal surface malignancy treatment in Japan. J Surg Oncol. 2019;10(Suppl 1):3–11.

    Google Scholar 

  49. Sticca RP, Dach BW. Rationale for hyperthermia with intraoperative intraperitoneal chemotherapy agents. Surg Oncol Clin N Am. 2003;12:689–701.

    PubMed  Google Scholar 

  50. Sugarbaker PH. Laboratory and clinical basis for hyperthermia as a component of intracavitary chemotherapy. Int J Hyperth. 2007;23:431–42.

    CAS  Google Scholar 

  51. Quénet F, Elias D, Roca L, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021. https://doi.org/10.1016/S1470-2045(20)30599-4.

    Article  PubMed  Google Scholar 

  52. Konisgrainer A, Rau B. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC): don’t throw the baby out with the bathwater. Pleura Peritoneum. 2018;3(4):20180131. https://doi.org/10.1515/pp-2018-0131.

    Article  Google Scholar 

  53. de Bree E, Michelakis D, Stamatiou D, Romanos J, Zoras O. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum. 2017;2:47–62. https://doi.org/10.1515/pp-2017-0010.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Budman DR. Dose and schedule as determinants of outcomes in chemotherapy for breast cancer. Semin Oncol. 2004;31(6 Suppl 15):3–9. https://doi.org/10.1053/j.seminoncol.2004.11.021.

    Article  PubMed  Google Scholar 

  55. Le Page S, Kwiatkowski F, Paulin C, Mohamed F, Pezet D, Chipponi J, et al. In vitro thermochemotherapy of colon cancer cell lines with irinotecan alone and combined with mitomycin C. Hepatogastroenterology. 2006;53:693–7.

    PubMed  Google Scholar 

  56. Witkamp A. Dose finding study of hyperthermic intraperitoneal chemotherapy with mitomycin C in patients with carcinosis of colorectal origin. Eur J Surg Oncol. 1998;24:214.

    Google Scholar 

  57. Johansen PB. Doxorubicin pharmacokinetics after intravenous and intraperitoneal administration in the nude mouse. Cancer Chemother Pharmacol. 1981;5:267–70.

    CAS  PubMed  Google Scholar 

  58. Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. A pharmacologic analysis of intraoperative intracavitary cancer chemotherapy with doxorubicin. Cancer Chemother Pharmacol. 2009;63:799–805. https://doi.org/10.1007/s00280-008-0800-0.

    Article  CAS  PubMed  Google Scholar 

  59. Cotte E, Passot G, Tod M, Bakrin N, Gilly FN, Steghens A, et al. Closed abdomen hyperthermic intraperitoneal chemotherapy with irinotecan and mitomycin C: a phase I study. Ann Surg Oncol. 2011;18:2599–603. https://doi.org/10.1245/s10434-011-1651-1.

    Article  PubMed  Google Scholar 

  60. Elias D, Bonnay M, Puizillou JM, Antoun S, Demirdjian S, El OA, et al. Heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13:267–72.

    CAS  PubMed  Google Scholar 

  61. Stewart JH, Shen P, Russell GB, et al. A Phase I trial of oxaliplatin for intraperitoneal hyperthermic chemoperfusion for the treatment of peritoneal surface dissemination from colorectal and appendiceal cancer. Ann Surg Oncol. 2008;15:2137–45.

    PubMed  PubMed Central  Google Scholar 

  62. Zivanovic O, Abramian A, Kullmann M, Fuhrmann C, Coch C, Hoeller T, et al. HIPEC ROC I: a phase i study of cisplatin administered as hyperthermic intraoperative intraperitoneal chemoperfusion followed by postoperative intravenous platinum-based chemotherapy in patients with platinum-sensitive recurrent epithelial ovarian cancer. Int J Cancer. 2014;136:699–708.

    PubMed  Google Scholar 

  63. Gouy S, Ferron G, Glehen O, Bayar A, Marchal F, Pomel C, et al. Results of a multicenter phase I dose-finding trial of hyperthermic intraperitoneal cisplatin after neoadjuvant chemotherapy and complete cytoreductive surgery and followed by maintenance bevacizumab in initially unresectable ovarian cancer. Gynecol Oncol. 2016;142:237–42. https://doi.org/10.1016/j.ygyno.2016.05.032.

    Article  CAS  PubMed  Google Scholar 

  64. Glehen O, Stuart OA, Mohamed F, Sugarbaker PH. Hyperthermia modifies pharmacokinetics and tissue distribution of intraperitoneal melphalan in a rat model. Cancer Chemother Pharmacol. 2004;54:79–84.

    CAS  PubMed  Google Scholar 

  65. Bijelic L, Sugarbaker PH, Stuart OA. Hyperthermic intraperitoneal chemotherapy with melphalan: a summary of clinical and pharmacological data in 34 patients. Gastroenterol Res Pract. 2012;2012:827534. https://doi.org/10.1155/2012/827534.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sugarbaker PH, Stuart OA, Bijelic L. Intraperitoneal gemcitabine chemotherapy treatment for patients with resected pancreatic cancer: rationale and report of early data. Int J Surg Oncol. 2011;2011:161862. https://doi.org/10.1155/2011/161862.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sabbatini P, Aghajanian C, Leitao M, Venkatraman E, Anderson S, Dupont J, et al. Intraperitoneal cisplatin with intraperitoneal gemcitabine in patients with epithelial ovarian cancer: results of a phase I/II trial. Clin Cancer Res. 2004;10:2962–7.

    CAS  PubMed  Google Scholar 

  68. Morgan RJ Jr, Synold TW, Xi B, Lim D, Shibata S, Margolin K, et al. Phase I trial of intraperitoneal gemcitabine in the treatment of advanced malignancies primarily confined to the peritoneal cavity. Clin Cancer Res. 2007;13:1232–7.

    CAS  PubMed  Google Scholar 

  69. Mohamed F, Marchettini P, Stuart OA, Urano M, Sugarbaker PH. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann Surg Oncol. 2003;10:463–8. https://doi.org/10.1245/aso.2003.08.006.

    Article  PubMed  Google Scholar 

  70. De Bree E, Theodoropoulos PA, Rosing H, Michalakis J, Romanos J, Beijnen JH, et al. Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat Rev. 2006;32:471–82.

    PubMed  Google Scholar 

  71. De Bree E, Rosing H, Michalakis J, Romanos J, Relakis K, Theodoropoulos PA, et al. Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol. 2006;32:666–70.

    PubMed  Google Scholar 

  72. Steller M, Egorin M, Trimble E, et al. A pilot phase I trial of continuous hyperthermic peritoneal perfusion with high-dose carboplatin as primary treatment of patients with small-volume residual ovarian cancer. Cancer Chemother Pharmacol. 1999;43:106–14. https://doi.org/10.1007/s002800050870.

    Article  CAS  PubMed  Google Scholar 

  73. de Bree E, Rosing H, Beijnen JH, Romanos J, Michalakis J, Georgoulias V, Tsiftsis DD. Pharmacokinetic study of docetaxel in intraoperative hyperthermic ip chemotherapy for ovarian cancer. Anticancer Drugs. 2003;14:103–10. https://doi.org/10.1097/00001813-200302000-00003.

    Article  PubMed  Google Scholar 

  74. Albanese AM, Albanese EF, Mino JH, et al. Peritoneal surface area: measurements of 40 structures covered by peritoneum: correlation between total peritoneal surface area and the surface calculated by formulas. Surg Radiol Anat. 2009;31:369–77.

    PubMed  Google Scholar 

  75. Ates K, Erturk S, Nergisoglu G, et al. Sex-dependent variations in peritoneal membrane transport properties in CAPD patients. Nephrol Dialysis Transplant. 1996;11:2375–6.

    CAS  Google Scholar 

  76. Lemoine L, Thijssen E, Carleer R, Geboers K, Sugarbaker P, van der Speeten K. Body surface area-based vs concentration-based perioperative intraperitoneal chemotherapy after optimal cytoreductive surgery in colorectal peritoneal surface malignancy treatment: COBOX trial. J Surg Oncol. 2019;119:999–1010. https://doi.org/10.1002/jso.25437.

    Article  CAS  PubMed  Google Scholar 

  77. Turaga K, Levine E, Barone R, Sticca R, Petrelli N, Lambert L, et al. Consensus guidelines from the American Society of Peritoneal Surface Malignancies on standardizing the delivery of hyperthermic intraperitoneal chemotherapy (HIPEC) in colorectal cancer patients in the United States. Ann Surg Oncol. 2014;21:1501–5.

    CAS  PubMed  Google Scholar 

  78. Van der Speeten K, Stuart OA, Sugarbaker PH. Pharmacokinetics and pharmacodynamics of perioperative cancer chemotherapy in peritoneal surface malignancy. Cancer J. 2009;15:216–24. https://doi.org/10.1097/PPO.0b013e3181a58d95.

    Article  PubMed  Google Scholar 

  79. Ceelen W. HIPEC with oxaliplatin for colorectal peritoneal metastasis: the end of the road? Eur J Surg Oncol. 2019;45:400–2. https://doi.org/10.1016/j.ejso.2018.10.542.

    Article  PubMed  Google Scholar 

  80. Elias DM, Sideris L. Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin North Am. 2003;12:755–69.

    Google Scholar 

  81. Goéré D, Glehen O, Quenet F, Guilloit JM, Bereder JM, Lorimier G, et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): a randomised, phase 3 study. Lancet Oncol. 2020;21:1147–54. https://doi.org/10.1016/S1470-2045(20)30322-3.

    Article  PubMed  Google Scholar 

  82. Klaver CEL, Wisselink DD, Punt CJA, Snaebjornsson P, Crezee J, Aalbers AGJ, et al. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. COLOPEC Collaborators Group. Lancet Gastroenterol Hepatol. 2019;4:761–70. https://doi.org/10.1016/S2468-1253(19)30239-0.

    Article  PubMed  Google Scholar 

  83. Rovers KP, Bakkers C, Simkens GAAM, et al. Perioperative systemic therapy and cytoreductive surgery with HIPEC versus upfront cytoreductive surgery with HIPEC alone for isolated resectable colorectal peritoneal metastases: protocol of a multicentre, open-label, parallel-group, phase II–III, randomised, superiority study (CAIRO6). BMC Cancer. 2019;19:390. https://doi.org/10.1186/s12885-019-5545-0.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cashin PH, Ehrsson H, Wallin I, et al. Pharmacokinetics of cisplatin during hyperthermic intraperitoneal treatment of peritoneal carcinomatosis. Eur J Clin Pharmacol. 2013;69:533–40. https://doi.org/10.1007/s00228-012-1405-4.

    Article  CAS  PubMed  Google Scholar 

  85. Mohamed F, Sugarbaker PH. Carrier solutions for intraperitoneal chemotherapy. Surg Oncol Clin N Am. 2003;12:813–24.

    PubMed  Google Scholar 

  86. Pestieau SR, Schnake KJ, Stuart OA, Sugarbaker PH. Impact of carrier solutions on the pharmacokinetics of intraperitoneal chemotherapy. Cancer Chemother Pharmacol. 2001;47:269–76.

    CAS  PubMed  Google Scholar 

  87. Tsujitani S, Oka A, Kondo A, Katano K, Oka S, Saito H, et al. Administration in a hypotonic solution is preferable to dose escalation in intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in rats. Oncology. 1999;57:77–82.

    CAS  PubMed  Google Scholar 

  88. Elias D, El Otmany A, Bonnay M, Paci A, Ducreux M, Antoun S, et al. Human pharmacokinetic study of heated intraperitoneal oxaliplatin in increasingly hypotonic solutions after complete resection of peritoneal carcinomatosis. Oncology. 2002;63:346–52.

    CAS  PubMed  Google Scholar 

  89. Mehta AM, Van den Hoven JM, Rosing H, Hillebrand MJ, Nuijen B, Huitema AD, Beijnen JH, Verwaal VJ. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy. Int J Pharm. 2015;479:23–7. https://doi.org/10.1016/j.ijpharm.2014.12.025.

    Article  CAS  PubMed  Google Scholar 

  90. Sugarbaker PH, Stuart OA, Carmignani CP. Pharmacokinetic changes induced by the volume of chemotherapy solution in patients treated with hyperthermic intraperitoneal mitomycin C. Cancer Chemother Pharmacol. 2006;57:703–8.

    CAS  PubMed  Google Scholar 

  91. Dedrick RL, Flessner MF. Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst. 1997;89:480–7.

    CAS  PubMed  Google Scholar 

  92. Esquis P, Consolo D, Magnin G, Pointaire P, Moretto P, Ysna MD, et al. High intraabdominal pressure enhances the penetration and antitumor effect of intra-peritoneal cisplatin on experimental carcinomatosis. Ann Surg. 2006;244:106–12.

    PubMed  PubMed Central  Google Scholar 

  93. Jacquet P, Stuart OA, Chang D, Sugarbaker PH. Effect of intraabdominal pressure on pharmacokinetics and tissue distribution of doxorubicin after intra-peritoneal administration. Anti-Cancer Drugs. 1996;7:596–603.

    CAS  PubMed  Google Scholar 

  94. Gesson-Paute A, Ferron G, Thomas F, de Lara EC, Chatelut E, Querleu D. Pharmacokinetics of oxaliplatin during open versus laparoscopically assisted heated intraoperative chemotherapy (HIPEC): an experimental study. Ann Surg Oncol. 2008;15:339–44.

    PubMed  Google Scholar 

  95. Kusamura S, Azmi N, Fumagalli L, Baratti D, Guaglio M, Cavalleri A, et al. Phase II randomized study on tissue distribution and pharmacokinetics of cisplatin according to different levels of intraabdominal pressure (IAP) during HIPEC (NCT02949791). Eur J Surg Oncol. 2021;47:82–8. https://doi.org/10.1016/j.ejso.2019.06.022.

    Article  PubMed  Google Scholar 

  96. Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperth. 1999;15:79–107.

    CAS  Google Scholar 

  97. Young JS, Lumsden CE, Stalker AL. The significance of the tissue pressure of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Pathol Bacteriol. 1950;62:313–33.

    CAS  PubMed  Google Scholar 

  98. Leunig M, Goetz AE, Dellian M, Zetterer G, Gamarra F, Jain RK, Messmer K. Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res. 1992;52:487–90.

    CAS  PubMed  Google Scholar 

  99. Hettinga VE. Reduction of Cisplatin Resistance by Hyperthermia. PhD Thesis, University of Groningen (ISBN 90-367-0648-3). Printpartners Ipskamp bv, Enschede, 1996.

  100. Hetting VE, Lemstra W, Meijer C, et al. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin sensitive and -resistant tumor cells. Br J Cancer. 1997;75:1735–43.

    Google Scholar 

  101. Hettinga JV, Konings AW, Kampinga HH. Reduction of cellular cisplatin resistance by hyperthermia: a review. Int J Hyperth. 1997;13:439–57.

    CAS  Google Scholar 

  102. Elias D, Raynard B, Bonnay M, Pocard M. Heated intraoperative intraperitoneal oxaliplatin alone and in combination with intraperitoneal irinotecan: pharmacologic studies. Eur J Surg Oncol. 2006;32:607–13.

    CAS  PubMed  Google Scholar 

  103. Ansaloni L, Coccolini F, Morosi L, et al. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer. 2015;112:306–12. https://doi.org/10.1038/bjc.2014.602.

    Article  CAS  PubMed  Google Scholar 

  104. Malgras B, Gayat E, Aoun O, Lo Dico R, Eveno C, Pautrat K, et al. Impact of combination chemotherapy in peritoneal mesothelioma hyperthermic intraperitoneal chemotherapy (HIPEC): The RENAPE study: RENAPE Network. Ann Surg Oncol. 2018;25:3271–9. https://doi.org/10.1245/s10434-018-6631-2.

    Article  PubMed  Google Scholar 

  105. Quénet F, Goéré D, Mehta SS, Roca L, Dumont F, Hessissen M, et al. Results of two bi-institutional prospective studies using intraperitoneal oxaliplatin with or without irinotecan during HIPEC after cytoreductive surgery for colorectal carcinomatosis. Ann Surg. 2011;254:294–301. https://doi.org/10.1097/SLA.0b013e3182263933.

    Article  PubMed  Google Scholar 

  106. Saikawa Y, Kubota T, Kuo TH, et al. Synergistic antitumor activity of mitomycin C and cisplatin against gastric cancer cells in vitro. J Surg Oncol. 1993;54:98–102. https://doi.org/10.1002/jso.2930540209.

    Article  CAS  PubMed  Google Scholar 

  107. Saikawa Y, Kubota T, Kuo TH, et al. Synergistic antitumor activity of combination chemotherapy with mitomycin C and cisplatin against human gastric cancer xenografts in nude mice. J Surg Oncol. 1994;56:242–5. https://doi.org/10.1002/jso.2930560408.

    Article  CAS  PubMed  Google Scholar 

  108. Glockzin G, Gerken M, Lang SA, Klinkhammer-Schalke M, Piso P, Schlitt HJ. Oxaliplatin-based versus irinotecan-based hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with peritoneal metastasis from appendiceal and colorectal cancer: a retrospective analysis. BMC Cancer. 2014;14:807.

    PubMed  PubMed Central  Google Scholar 

  109. Hakeam H, Ayman A, Waleed AT, Amen T. Systemic complications of the bidirectional intraoperative chemotherapy with intravenous ifosfamide and hyperthermic intraperitoneal chemotherapy (HIPEC) using cisplatin plus doxorubicin. Pleura Peritoneum. 2019;4:20190025. https://doi.org/10.1515/pp-2019-0025.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Van der Speeten K, Lemoine L. HIPEC Methodology, comparison of techniques, and drug regimens: is there a need for standardization? In: A Bhatt, editor. Management of peritoneal metastases: cytoreductive surgery, HIPEC, and beyond. Singapore: Springer; 2018.

    Google Scholar 

  111. Jacquet P, Sugarbaker PH. Peritoneal–plasma barrier. Cancer Treat Res. 1996;82:53–63.

    CAS  PubMed  Google Scholar 

  112. De Lima Vazquez V, Stuart OA, Mohamed F, Sugarbaker PH. Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics. Cancer Chemother Pharmacol. 2003;52:108–12.

    Google Scholar 

  113. Jacquet P, Averbach A, Stephens AD, Stuart OA, Chang D, Sugarbaker PH. Heated intraoperative intraperitoneal mitomycin C and early postoperative intraperitoneal 5-fluorouracil: pharmacokinetic studies. Oncology. 1998;55:130–8.

    CAS  PubMed  Google Scholar 

  114. Sugarbaker PH, Van Der Speeten K, Anthony Stuart O, Chang D. Impact of surgical and clinical factors on the pharmacology of intraperitoneal doxorubicin in 145 patients with peritoneal carcinomatosis. Eur J Surg Oncol. 2011;37:719–26.

    CAS  PubMed  Google Scholar 

  115. Villa AF, El Balkhi S, Aboura R, Sageot H, Hasni-Pichard H, Pocard M, et al. Evaluation of oxaliplatin exposure of healthcare workers during heated intraperitoneal perioperative chemotherapy (HIPEC). Ind Health. 2015;53:28–37.

    CAS  PubMed  Google Scholar 

  116. Elias D, Antoun S, Goharin A, Otmany AE, Puizillout JM, Lasser P. Research on the best chemohyperthermia technique of treatment of peritoneal carcinomatosis after complete resection. Int J Surg Investig. 2000;1:431–9.

    CAS  PubMed  Google Scholar 

  117. Leiting JL, Cloyd JM, Ahmed A, Fournier K, Lee AJ, Dessureault S, et al. Comparison of open and closed hyperthermic intraperitoneal chemotherapy: results from the United States hyperthermic intraperitoneal chemotherapy collaborative. World J Gastrointest Oncol. 2020;12:756–67.

    PubMed  PubMed Central  Google Scholar 

  118. Ubink I, Bolhaqueiro ACF, Elias SG, Raats DAE, Constantinides A, Peters NA, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br J Surg. 2019;106:1404–14. https://doi.org/10.1002/bjs.11206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Votanopoulos KI, Mazzocchi A, Sivakumar H, et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Ann Surg Oncol. 2019;26:139–47. https://doi.org/10.1245/s10434-018-7008-2.

    Article  PubMed  Google Scholar 

  120. Forsythe SD, Sasikumar S, Moaven O, et al. Personalized identification of optimal HIPEC perfusion protocol in patient-derived tumor organoid platform. Ann Surg Oncol. 2020;27:4950–60. https://doi.org/10.1245/s10434-020-08790-2.

    Article  PubMed  Google Scholar 

  121. Yurttas C, Hoffmann G, Tolios A, Haen SP, Schwab M, Königsrainer I, et al. Systematic review of variations in hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal metastasis from colorectal cancer. J Clin Med. 2018;7:567. https://doi.org/10.3390/jcm7120567.

    Article  PubMed Central  Google Scholar 

  122. Baratti D, Kusamura S, Azmi N, Guaglio M, Montenovo M, Deraco M. Colorectal peritoneal metastases treated by perioperative systemic chemotherapy and cytoreductive surgery with or without mitomycin C-based HIPEC: a comparative study using the Peritoneal Surface Disease Severity Score (PSDSS). Ann Surg Oncol. 2020;27:98–106. https://doi.org/10.1245/s10434-019-07935-2.

    Article  PubMed  Google Scholar 

  123. Leung V, Huo YR, Liauw W, Morris DL. Oxaliplatin versus mitomycin C for HIPEC in colorectal cancer peritoneal carcinomatosis. Eur J Surg Oncol. 2017;43:144–9. https://doi.org/10.1016/j.ejso.2016.09.015.

    Article  CAS  PubMed  Google Scholar 

  124. Prada-Villaverde A, Esquivel J, Lowy AM, Markman M, Chua T, Pelz J, et al. The American Society of Peritoneal Surface Malignancies evaluation of HIPEC with mitomycin C versus oxaliplatin in 539 patients with colon cancer undergoing a complete cytoreductive surgery. Surg Oncol. 2014;110:779–85. https://doi.org/10.1002/jso.23728.

    Article  CAS  Google Scholar 

  125. Levine EA, Votanopoulos KI, Shen P, et al. A multicenter randomized trial to evaluate hematologic toxicities after hyperthermic intraperitoneal chemotherapy with oxaliplatin or mitomycin in patients with appendiceal tumors (published correction appears in J Am Coll Surg. 2018;227:633). J Am Coll Surg. 2018;226:434–43. https://doi.org/10.1016/j.jamcollsurg.2017.12.02.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chalret du Rieu Q, White-Koning M, Picaud L, Lochon I, Marsili S, Gladieff L, et al. Population pharmacokinetics of peritoneal, plasma ultrafiltrated, and protein-bound oxaliplatin concentrations in patients with disseminated peritoneal cancer after intraperitoneal hyperthermic chemoperfusion of oxaliplatin following cytoreductive surgery: correlation between oxaliplatin exposure and thrombocytopenia. Cancer Chemother Pharmacol. 2014;74:571–82.

    CAS  PubMed  Google Scholar 

  127. Charrier T, Passot G, Peron J, Maurice C, Gocevska S, Quenet F, et al. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy with oxaliplatin increases the risk of postoperative hemorrhagic complications: analysis of predictive factors. Ann Surg Oncol. 2016;23:2315–22.

    PubMed  Google Scholar 

  128. Hompes D, D’Hoore A, Wolthuis A, Fieuws S, Mirck B, Bruin S, Verwaal V. The use of oxaliplatin or mitomycin C in HIPEC treatment for peritoneal carcinomatosis from colorectal cancer: a comparative study. J Surg Oncol. 2014;109:527–32. https://doi.org/10.1002/jso.23546.

    Article  CAS  PubMed  Google Scholar 

  129. Votanopoulos K, Ihemelandu C, Shen P, Stewart J, Russell G, Levine EA. A comparison of hematologic toxicity profiles after heated intraperitoneal chemotherapy with oxaliplatin and mitomycin C. J Surg Res. 2013;179:e133–9. https://doi.org/10.1016/j.jss.2012.01.015.

    Article  CAS  PubMed  Google Scholar 

  130. van Eden WJ, Kok NFM, Woensdregt K, Huitema ADR, Boot H, Aalbers AGJ. Safety of intraperitoneal mitomycin C versus intraperitoneal oxaliplatin in patients with peritoneal carcinomatosis of colorectal cancer undergoing cytoreductive surgery and HIPEC. Eur J Surg Oncol. 2018;44:220–7. https://doi.org/10.1016/j.ejso.2017.10.216.

    Article  PubMed  Google Scholar 

  131. Sipok A, Sardi A, Nieroda C, King MC, Sittig M, Gushchin V. Comparison of survival in patients with isolated peritoneal carcinomatosis from colorectal cancer treated with cytoreduction and melphalan or mitomycin C as hyperthermic intraperitoneal chemotherapy agent. Int J Surg Oncol, 2018;2018:1920276. https://doi.org/10.1155/2018/1920276.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bakkers C, van Erning FN, Rovers KP, Nienhuijs SW, Burger JW, Lemmens VE, et al. Long-term survival after hyperthermic intraperitoneal chemotherapy using mitomycin C or oxaliplatin in colorectal cancer patients with synchronous peritoneal metastases: a nationwide comparative study. Eur J Surg Oncol. 2020;46(10 Pt A):1902–7. https://doi.org/10.1016/j.ejso.2020.04.018.

    Article  CAS  PubMed  Google Scholar 

  133. Bae JH, Lee JM, Ryu KS, et al. Treatment of ovarian cancer with paclitaxel- or carboplatin-based intraperitoneal hyperthermic chemotherapy during secondary surgery. Gynecol Oncol. 2007;106:193–200.

    CAS  PubMed  Google Scholar 

  134. Cascales-Campos P, López-López V, Gil J, Arévalo-Pérez J, Nieto A, Barceló F, et al. Hyperthermic intraperitoneal chemotherapy with paclitaxel or cisplatin in patients with stage III-C/IV ovarian cancer: is there any difference? Surg Oncol. 2016;25:164–70. https://doi.org/10.1016/j.suronc.2016.05.010.

    Article  CAS  PubMed  Google Scholar 

  135. Gurney H, Ackland S, Liddle C, Dunleavey R, Rivory L, Farlow D, et al. Determining the drug elimination phenotype: hepatic sestamibi scan and midazolam clearance as in vivo tests for drug metabolism and biliary elimination (abstract). Proc Am Soc Clin Oncol. 2001;20:305.

    Google Scholar 

  136. Gurney HP, Ackland S, Gebski V, Farrell G. Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body-surface area for dose calculation. J Clin Oncol. 1998;16:2299–3004.

    CAS  PubMed  Google Scholar 

  137. Ratain MJ. Body surface area as a basis for dosing of anticancer agents: science, myth, or habit? J Clin Oncol. 1998;16:2297–8.

    CAS  PubMed  Google Scholar 

  138. Gurney H. Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol. 1996;14:2590–611.

    CAS  PubMed  Google Scholar 

  139. Horwich A, Sleijfer DT, Fossa SD, Kaye SB, Oliver RT, Cullen MH, et al. Randomized trial of bleomycin, etoposide, and cisplatin compared with bleomycin, etoposide, and carboplatin in good-prognosis metastatic non-seminomatous germ cell cancer: a Multi-institutional Medical Research Council/European Organization for Research and Treatment of Cancer trial. J Clin Oncol. 1997;15:1844–52.

    CAS  PubMed  Google Scholar 

  140. Gurney H. How to calculate the dose of chemotherapy. Br J Cancer. 2002;86:1297–302. https://doi.org/10.1038/sj.bjc.6600139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liutkauskiene S, Grizas S, Jureniene K, et al. Retrospective analysis of the impact of anthracycline dose reduction and chemotherapy delays on the outcomes of early breast cancer molecular subtypes. BMC Cancer. 2018;18:453. https://doi.org/10.1186/s12885-018-4365-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Munker S, Gerken M, Fest P, et al. Chemotherapy for metastatic colon cancer: no effect on survival when the dose is reduced due to side effects. BMC Cancer. 2018;18:455. https://doi.org/10.1186/s12885-018-4380-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. https://doi.org/10.1136/bmj.328.7454.1490.

    Article  PubMed  Google Scholar 

  144. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction: GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.

    Article  PubMed  Google Scholar 

  145. Glehen O, Cotte E, Kusamura S, Deraco M, Baratti D, Passot G, et al. Hyperthermic intraperitoneal chemotherapy: nomenclature and modalities of perfusion. J Surg Oncol. 2008;98:242–6.

    PubMed  Google Scholar 

  146. Glehen O, Osinsky D, Cotte E, Kwiatkowski F, Freyer G, Isaac S, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003;10:863–9.

    CAS  PubMed  Google Scholar 

  147. Shimizu T, Maeta M, Koga S. Influence of local hyperthermia on the healing of small intestinal anastomoses in the rat. Br J Surg. 1991;78:57–9.

    CAS  PubMed  Google Scholar 

  148. De Bree E, Tsiftsis DD. Principles of perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis. Recent Results Cancer Res. 2007;169:39–51.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Glehen MD, PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, A., de Hingh, I., Van Der Speeten, K. et al. HIPEC Methodology and Regimens: The Need for an Expert Consensus. Ann Surg Oncol 28, 9098–9113 (2021). https://doi.org/10.1245/s10434-021-10193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-021-10193-w

Navigation