Skip to main content

Advertisement

Log in

MicroRNA Signature Distinguishes the Degree of Aggressiveness of Papillary Thyroid Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Papillary thyroid carcinoma (PTC) has relatively indolent behavior, although some tumors recur and disseminate to distant sites. The aggressive biological behavior of PTC is difficult to predict. MicroRNAs (miRNAs) are dysregulated in various tumors types, and some of them serve as markers of poor prognosis. In this study, we evaluated miRNA expression as a marker of more aggressive behavior in PTC.

Methods

miRNA array was used to identify a subset of differentially expressed miRNAs between aggressive and nonaggressive PTC. These miRNAs were further validated by real-time RT-PCR in a cohort of 17 PTC with local tumor recurrence or distant metastases and 15 PTC with no extrathyroidal dissemination and correlated with BRAF, RAS, and RET/PTC mutations and MET expression.

Results

The miRNA array identified miR-146b, miR-221, miR-222, miR-155, miR-31 upregulation and miR-1, miR-34b, miR-130b, miR-138 downregulation in aggressive compared with nonaggressive PTC. Significant miRNA deregulation was confirmed in the validation cohort, with upregulation of miR-146b and miR-222 and downregulation of miR-34b and miR-130b seen in aggressive PTC. Among BRAF-positive tumors, miR-146b showed strong association with aggressive PTC. MET was identified as a potential target gene for 2 downregulated miRNAs (miR-34b and miR-1), and significantly higher level of MET expression was observed in aggressive PTC.

Conclusions

We demonstrate that miR-146b, miR-222, miR-34b, miR-130b are differentially expressed in aggressive compared with nonaggressive PTC. Among BRAF-positive tumors, overexpression of miR-146b was associated with aggressive behavior, suggesting that it may further refine the prognostic importance of BRAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, et al. SEER Cancer Statistics Review, 1975–2007, National Cancer Institute. Bethesda, MD. Available at: http://seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site, 2010.

  2. Esquela-Kerscher A, Slack FJ. Oncomirs—MicroRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  PubMed  CAS  Google Scholar 

  3. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

    Article  PubMed  CAS  Google Scholar 

  4. Schwertheim S, Sheu SY, Worm K, Grabellus F, Schmid KW. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res. 2009;41:475–81.

    Article  PubMed  CAS  Google Scholar 

  5. He H, Jazdzewski K, Li W, Livanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102:19075–80.

    Article  PubMed  CAS  Google Scholar 

  6. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ, 3rd, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 2008;21:1139–46.

    Article  PubMed  CAS  Google Scholar 

  7. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508.

    Article  PubMed  CAS  Google Scholar 

  8. Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW, et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol. 2007;18:163–73.

    Article  PubMed  CAS  Google Scholar 

  9. Sheu SY, Grabellus F, Schwertheim S, Worm K, Broecker-Preuss M, Schmid KW. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer. 2010;102:376–82.

    Article  PubMed  CAS  Google Scholar 

  10. Nikiforova MN, Chiosea SI, Nikiforov YE. MicroRNA expression profiles in thyroid tumors. Endocr Pathol. 2009;20:85–91.

    Article  PubMed  CAS  Google Scholar 

  11. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–8.

    Article  PubMed  CAS  Google Scholar 

  12. Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, et al. BRAF(V600e) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.

    Article  PubMed  CAS  Google Scholar 

  13. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  PubMed  CAS  Google Scholar 

  14. Yip L, Nikiforova MN, Carty SE, Yim JH, Stang MT, Tublin MJ, et al. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery. 2009;146:1215–23.

    Article  PubMed  Google Scholar 

  15. DeLellis RA, Lloyd RV, Heitz PU, Eng C. World health organization classification of tumours. pathology and genetics of tumours of endocrine organs. Lyon: IARC Press, 2004.

    Google Scholar 

  16. Nikiforova MN, Caudill CM, Biddinger P, Nikiforov YE. Prevalence of RET/PTC rearrangements in Hashimoto’s thyroiditis and papillary thyroid carcinomas. Int J Surg Pathol. 2002;10:15–22.

    Article  PubMed  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  18. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8.

    Article  PubMed  CAS  Google Scholar 

  19. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.

    Article  PubMed  CAS  Google Scholar 

  21. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article  PubMed  CAS  Google Scholar 

  22. Duan Z, Choy E, Nielsen GP, Rosenberg A, Iafrate J, Yang C, et al. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in met expression. J Orthop Res. 2010;28:746–52.

    PubMed  CAS  Google Scholar 

  23. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, et al. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68:10128–36.

    Article  PubMed  CAS  Google Scholar 

  24. Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ, Lee YF, et al. MiR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid. 2010;20:489–94.

    Article  PubMed  CAS  Google Scholar 

  25. Pacifico F, Leonardi A. Role of NF-kappaB in thyroid cancer. Mol Cell Endocrinol. 2010;321:29–35.

    Article  PubMed  CAS  Google Scholar 

  26. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses Nf-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27:5643–7.

    Article  PubMed  CAS  Google Scholar 

  27. Hurst DR, Mehta A, Moore BP, Phadke PA, Meehan WJ, Accavitti MA, et al. Breast cancer metastasis suppressor 1 (Brms1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun. 2006;348:1429–35.

    Article  PubMed  CAS  Google Scholar 

  28. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2008;283:33394–405.

    Article  PubMed  CAS  Google Scholar 

  29. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, et al. Methylation Mediated Silencing of Microrna-1 Gene and Its Role in Hepatocellular Carcinogenesis. Cancer Res. 2008;68:5049–58.

    Article  PubMed  CAS  Google Scholar 

  30. Nardone HC, Ziober AF, LiVolsi VA, Mandel SJ, Baloch ZW, Weber RS, et al. c-Met expression in tall cell variant papillary carcinoma of the thyroid. Cancer. 2003;98:1386–93.

    Article  PubMed  CAS  Google Scholar 

  31. Scarpino S, Cancellario d’Alena F, Di Napoli A, Pasquini A, Marzullo A, Ruco LP. Increased expression of Met protein is associated with up-regulation of hypoxia inducible factor-1 (Hif-1) in tumour cells in papillary carcinoma of the thyroid. J Pathol. 2004;202:352–8.

    Article  PubMed  CAS  Google Scholar 

  32. Ruco LP, Stoppacciaro A, Ballarini F, Prat M, Scarpino S. Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenetic role in tumourigenesis. J Pathol. 2001;194:4–8.

    Article  PubMed  CAS  Google Scholar 

  33. Belfiore A, Gangemi P, Costantino A, Russo G, Santonocito GM, Ippolito O, et al. Negative/low expression of the Met/hepatocyte growth factor receptor identifies papillary thyroid carcinomas with high risk of distant metastases. J Clin Endocrinol Metab. 1997;82:2322–8.

    Article  PubMed  CAS  Google Scholar 

  34. Eder JP, Shapiro GI, Appleman LJ, Zhu AX, Miles D, Keer H, et al. A phase I study of foretinib, a multi-targeted inhibitor of C-Met and vascular endothelial growth factor receptor 2. Clin Cancer Res. 2010;16:3507–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Institute of Health grant R01 CA88041 to Y.E. N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina N. Nikiforova MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, L., Kelly, L., Shuai, Y. et al. MicroRNA Signature Distinguishes the Degree of Aggressiveness of Papillary Thyroid Carcinoma. Ann Surg Oncol 18, 2035–2041 (2011). https://doi.org/10.1245/s10434-011-1733-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-1733-0

Keywords

Navigation