Skip to main content

Advertisement

Log in

Low-Level Expression of Smad7 Correlates with Lymph Node Metastasis and Poor Prognosis in Patients with Pancreatic Cancer

  • Hepatobiliary and Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Whether Smad7 acts as a tumor proliferation promoting factor or as a metastatic suppressor in human pancreatic cancer remains unclear. This study aims to determine the prognostic value of Smad7 in patients with pancreatic adenocarcinoma.

Methods

Surgical specimens obtained from 71 patients with pancreatic adenocarcinoma were immunohistochemically assessed for Smad7, Ki-67, MMP2, CD34, and Smad4 expression. The relationship between Smad7 expression and the clinicopathological characteristics of patients with pancreatic adenocarcinoma were also evaluated.

Results

Fifty-one of 71 specimens (71.8%) were Smad7 positive and 20 specimens were Smad7 negative. Negative expression of Smad7 correlated with lymph node metastasis, liver metastasis after surgery, and a poor survival rate (P = 0.0004, 0.0044, and 0.0003, respectively). We also found an inverse correlation between the expression of Smad7 and MMP2 (P = 0.0189). Multivariate analysis revealed that Smad7 expression was an independent prognostic factor [hazard ratio (HR) 0.3902; 95% confidence interval (CI) 0.1839–0.8277; P = 0.0142]. Furthermore, in both Smad4-negative and Smad4-positive groups, survival of patients with Smad7-positive tumors was significantly better than those with Smad7-negative tumors (both P < 0.0001).

Conclusions

We conclude that low-level expression of Smad7 in pancreatic cancer is significantly associated with lymph node metastasis, high MMP2 expression, and poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goggins M, Shekher M, Turnacioglu K, et al. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res. 1998;58:5329–32.

    PubMed  CAS  Google Scholar 

  2. Jonson T, Gorunova L, Dawiskiba S, et al. Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer. 1999;24:62–71.

    Article  PubMed  CAS  Google Scholar 

  3. Villanueva A, Garcia C, Paules AB, et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene. 1998;17:1969–78.

    Article  PubMed  CAS  Google Scholar 

  4. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.

    Article  PubMed  CAS  Google Scholar 

  6. Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res. 1996;56:2527–30.

    PubMed  CAS  Google Scholar 

  7. Togo G, Toda N, Kanai F, et al. A transforming growth factor beta type II receptor gene mutation common in sporadic cecum cancer with microsatellite instability. Cancer Res. 1996;56:5620–3.

    PubMed  CAS  Google Scholar 

  8. Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18:3098–103.

    Article  PubMed  CAS  Google Scholar 

  9. Wang D, Kanuma T, Mizunuma H, et al. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Cancer Res. 2000;60:4507–12.

    PubMed  CAS  Google Scholar 

  10. Boulay JL, Mild G, Lowy A, et al. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J Cancer. 2003;104:446–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cerutti JM, Ebina KN, Matsuo SE, et al. Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines. J Endocrinol Invest. 2003;26:516–21.

    PubMed  CAS  Google Scholar 

  12. Kim YH, Lee HS, Lee HJ, et al. Prognostic significance of the expression of Smad4 and Smad7 in human gastric carcinomas. Ann Oncol. 2004;15:574–80.

    Article  PubMed  CAS  Google Scholar 

  13. Monteleone G, Del Vecchio Blanco G, Palmieri G, et al. Induction and regulation of Smad7 in the gastric mucosa of patients with Helicobacter pylori infection. Gastroenterology. 2004;126:674–82.

    Article  PubMed  CAS  Google Scholar 

  14. Dowdy SC, Mariani A, Reinholz MM, et al. Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol. 2005;96:368–73.

    Article  PubMed  CAS  Google Scholar 

  15. Kuang C, Xiao Y, Liu X, et al. In vivo disruption of TGF-beta signaling by Smad7 leads to premalignant ductal lesions in the pancreas. Proc Natl Acad Sci USA. 2006;103:1858–63.

    Article  PubMed  CAS  Google Scholar 

  16. Kleeff J, Maruyama H, Friess H, et al. Smad6 suppresses TGF-beta-induced growth inhibition in COLO–357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun. 1999;255:268–73.

    Article  PubMed  CAS  Google Scholar 

  17. Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Exp Cell Res. 2005;307:231–46.

    Article  PubMed  CAS  Google Scholar 

  18. Akhurst RJ, Derynck R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol. 2001;11:S44–51.

    PubMed  CAS  Google Scholar 

  19. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002;12:22–9.

    Article  PubMed  CAS  Google Scholar 

  20. Azuma H, Ehata S, Miyazaki H, et al. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst. 2005;97:1734–46.

    Article  PubMed  CAS  Google Scholar 

  21. Javelaud D, Mohammad KS, McKenna CR, et al. Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res. 2007;67:2317–24.

    Article  PubMed  CAS  Google Scholar 

  22. Sobin LH, Wittekind CH. International Union Against Cancer. TNM classification of malignant tumours (6th ed.). New York: Wiley-Liss; 2002.

    Google Scholar 

  23. Fukuchi M, Fukai Y, Masuda N, et al. High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 2002;62:7162–5.

    PubMed  CAS  Google Scholar 

  24. Takahashi H, Oda T, Hasebe T, et al. Biologically different subgroups of invasive ductal carcinoma of the pancreas: Dpc4 status according to the ratio of intraductal carcinoma components. Clin Cancer Res. 2004;10:3772–9.

    Article  PubMed  CAS  Google Scholar 

  25. Ebisawa T, Fukuchi M, Murakami G, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001;276:12477–80.

    Article  PubMed  CAS  Google Scholar 

  26. Shi W, Sun C, He B, et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol. 2004;164:291–300.

    Article  PubMed  CAS  Google Scholar 

  27. Hata A, Lagna G, Massague J, et al. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998;12:186–97.

    Article  PubMed  CAS  Google Scholar 

  28. Bai S, Cao X. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling. J Biol Chem. 2002;277:4176–82.

    Article  PubMed  CAS  Google Scholar 

  29. Osawa H, Nakajima M, Kato H, et al. Prognostic value of the expression of Smad6 and Smad7, as inhibitory Smads of the TGF-beta superfamily, in esophageal squamous cell carcinoma. Anticancer Res. 2004;24:3703–9.

    PubMed  CAS  Google Scholar 

  30. Kleeff J, Ishiwata T, Maruyama H, et al. The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene. 1999;18:5363–72.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu HJ, Iaria J, Sizeland AM. Smad7 differentially regulates transforming growth factor beta-mediated signaling pathways. J Biol Chem. 1999;274:32258–64.

    Article  PubMed  CAS  Google Scholar 

  32. Dahler AL, Cavanagh LL, Saunders NA. Suppression of keratinocyte growth and differentiation by transforming growth factor beta1 involves multiple signaling pathways. J Invest Dermatol. 2001;116:266–74.

    Article  PubMed  CAS  Google Scholar 

  33. Blanchette F, Rivard N, Rudd P, et al. Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gene transactivation. J Biol Chem. 2001;276:33986–94.

    Article  PubMed  CAS  Google Scholar 

  34. Javelaud D, Delmas V, Moller M, et al. Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene. 2005;24:7624–9.

    Article  PubMed  CAS  Google Scholar 

  35. Boyer Arnold N, Korc M. Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO–357 cells through functional inactivation of the retinoblastoma protein. J Biol Chem. 2005;280:21858–66.

    Article  PubMed  CAS  Google Scholar 

  36. Kleeff J, Korc M. Up-regulation of transforming growth factor (TGF)-beta receptors by TGF-beta1 in COLO-357 cells. J Biol Chem. 1998;273:7495–500.

    Article  PubMed  CAS  Google Scholar 

  37. Nicolas FJ, Hill CS. Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene. 2003;22:3698–711.

    Article  PubMed  CAS  Google Scholar 

  38. Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res. 2004;64:5200–11.

    Article  PubMed  CAS  Google Scholar 

  39. Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007;1775:21–62.

    PubMed  CAS  Google Scholar 

  40. Ijichi H, Ikenoue T, Kato N, et al. Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun. 2001;289:350–7.

    Article  PubMed  CAS  Google Scholar 

  41. Ijichi H, Otsuka M, Tateishi K, et al. Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta. Oncogene. 2004;23:1043–51.

    Article  PubMed  CAS  Google Scholar 

  42. Leivonen SK, Ala-Aho R, Koli K, et al. Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene. 2006;25:2588–600.

    Article  PubMed  CAS  Google Scholar 

  43. Delcore R, Rodriguez FJ, Forster J, et al. Significance of lymph node metastases in patients with pancreatic cancer undergoing curative resection. Am J Surg. 1996;172:463–8; discussion 8–9

    Article  PubMed  CAS  Google Scholar 

  44. Pedrazzoli S, DiCarlo V, Dionigi R, et al. Standard versus extended lymphadenectomy associated with pancreatoduodenectomy in the surgical treatment of adenocarcinoma of the head of the pancreas: a multicenter, prospective, randomized study. Lymphadenectomy Study Group. Ann Surg. 1998;228:508–17.

    Article  PubMed  CAS  Google Scholar 

  45. Koshiba T, Hosotani R, Wada M, et al. Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma. Cancer. 1998;82:642–50.

    Article  PubMed  CAS  Google Scholar 

  46. Juuti A, Lundin J, Nordling S, et al. Epithelial MMP-2 expression correlates with worse prognosis in pancreatic cancer. Oncology. 2006;71:61–8.

    Article  PubMed  CAS  Google Scholar 

  47. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  PubMed  CAS  Google Scholar 

  48. Enholm B, Paavonen K, Ristimaki A, et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene. 1997;14:2475–83.

    Article  PubMed  CAS  Google Scholar 

  49. Benckert C, Jonas S, Cramer T, et al. Transforming growth factor beta 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res. 2003;63:1083–92.

    PubMed  CAS  Google Scholar 

  50. Dickson MC, Martin JS, Cousins FM, et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995;121:1845–54.

    PubMed  CAS  Google Scholar 

  51. Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol. 1996;179:297–302.

    Article  PubMed  CAS  Google Scholar 

  52. Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284:1534–7.

    Article  PubMed  CAS  Google Scholar 

  53. Larsson J, Goumans MJ, Sjostrand LJ, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J. 2001;20:1663–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the “Climbing Up” Project of Shanghai Municipal Commission for Science and Technology, Shanghai, China, grant number GJ-KW0601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Ming Liu MD.

Additional information

Peng Wang and Jie Fan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Fan, J., Chen, Z. et al. Low-Level Expression of Smad7 Correlates with Lymph Node Metastasis and Poor Prognosis in Patients with Pancreatic Cancer. Ann Surg Oncol 16, 826–835 (2009). https://doi.org/10.1245/s10434-008-0284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-008-0284-5

Keywords

Navigation