Skip to main content

Advertisement

Log in

Immunohistochemical Expression of p16INK4A, Ki-67, and Mcm2 Proteins in Gastrointestinal Stromal Tumors: Prognostic Implications and Correlations with Risk Stratification of NIH Consensus Criteria

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Inactivation of p16INK4A promotes G1/S progression of cell cycle. Minichromosome maintenance protein-2 (Mcm2), a novel cell proliferation marker, is known to better correlate with clinical outcomes than Ki-67 in many carcinomas. Since gastrointestinal stromal tumors (GISTs) sometimes remains challenging in prognostication, we analyzed the utility of these three markers in GISTs.

Methods

Immunohistochemistry was performed in tissue microarrays of 277 primary GISTs and correlated with NIH consensus criteria and clinical outcomes.

Results

The increment of NIH risk levels significantly correlated with increasing labeling indices (LI) of both Ki-67 (P <.001) and Mcm2 (P <.001) and loss of p16INK4A expression (P <.035). However, the latter aberration did occur in 23% of very low/low-risk GISTs. The relationship between Mcm2 and Ki-67 LIs could be modeled as linear (P <.001, = 0.697), while Mcm2 LI was considerably higher (P <.001) with a stepwise escalation related to risk levels. Ki-67 LI >5% (P <.0001) and Mcm2 LI >10% (P <.0001) were strongly predictive of inferior disease-specific survival (DSS), while aberrant loss of p16INK4A only reached a trend (P = .0954). In multivariate analyses, independent adverse factors of DSS were high-risk category (RR = 16.93, P <.0001), metastatic disease (RR = 4.12, P = .0015), Ki-67 LI >5% (RR = 3.55, P = .001), and presence of epithelioid histology (RR = 2.17, P = .0308).

Conclusions

Prognostic efficacy of NIH consensus criteria is substantiated. P16INK4A deregulation can occur early in GIST tumorigenesis and marginally correlates with patient survival. Despite Ki-67 LI being an independent prognosticator, simultaneous detection of Mcm2 is recommended as a prognostic adjunct of GISTs, given its better sensitivity and stepwise escalation with increasing risk levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.

Similar content being viewed by others

References

  1. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 2002; 33(5):459–65

    Article  PubMed  Google Scholar 

  2. Miettinen M, El-Rifai W, L HLS, Lasota J. Evaluation of malignancy and prognosis of gastrointestinal stromal tumors: a review. Hum Pathol 2002; 33(5):478–83

    Article  PubMed  CAS  Google Scholar 

  3. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol 2004; 22(18):3813–25

    Article  PubMed  CAS  Google Scholar 

  4. Corless CL, Schroeder A, Griffith D, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005; 23(23):5357–64

    Article  PubMed  CAS  Google Scholar 

  5. Duensing A, Joseph NE, Medeiros F, et al. Protein kinase C theta (PKCtheta) expression and constitutive activation in gastrointestinal stromal tumors (GISTs). Cancer Res 2004; 64(15):5127–131

    Article  PubMed  CAS  Google Scholar 

  6. Blay P, Astudillo A, Buesa JM, et al. Protein kinase C theta is highly expressed in gastrointestinal stromal tumors but not in other mesenchymal neoplasias. Clin Cancer Res 2004; 10(12 Pt 1):4089–95

    Article  PubMed  CAS  Google Scholar 

  7. Antonescu CR, Sommer G, Sarran L, et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 2003; 9(9):3329–37

    PubMed  CAS  Google Scholar 

  8. Heinrich MC, Rubin BP, Longley BJ, Fletcher JA. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol 2002; 33(5):484–95

    Article  PubMed  CAS  Google Scholar 

  9. Martin J, Poveda A, Llombart-Bosch A, et al. Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol 2005; 23(25):6190–8

    Article  PubMed  CAS  Google Scholar 

  10. Lasota J, Kopczynski J, Sarlomo-Rikala M, et al. KIT 1530ins6 mutation defines a subset of predominantly malignant gastrointestinal stromal tumors of intestinal origin. Hum Pathol 2003; 34(12):1306–12

    Article  PubMed  CAS  Google Scholar 

  11. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 2005; 29(1):52–68

    Article  PubMed  Google Scholar 

  12. Franquemont DW. Differentiation and risk assessment of gastrointestinal stromal tumors. Am J Clin Pathol 1995; 103(1):41–7

    PubMed  CAS  Google Scholar 

  13. Borden EC, Baker LH, Bell RS, et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 2003; 9(6):1941–56

    PubMed  Google Scholar 

  14. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378(2):F115–77

    PubMed  CAS  Google Scholar 

  15. Huang HY, Illei PB, Zhao Z, et al. Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 2005; 23(3):548–58

    Article  PubMed  CAS  Google Scholar 

  16. El-Rifai W, Sarlomo-Rikala M, Andersson LC, Knuutila S, Miettinen M. DNA sequence copy number changes in gastrointestinal stromal tumors: tumor progression and prognostic significance. Cancer Res 2000; 60(14):3899–903

    PubMed  CAS  Google Scholar 

  17. Sabah M, Cummins R, Leader M, Kay E. Loss of heterozygosity of chromosome 9p and loss of p16INK4A expression are associated with malignant gastrointestinal stromal tumors. Mod Pathol 2004; 17(11):1364–71

    Article  PubMed  CAS  Google Scholar 

  18. Ricci R, Arena V, Castri F, et al. Role of p16/INK4a in gastrointestinal stromal tumor progression. Am J Clin Pathol 2004; 122(1):35–43

    Article  PubMed  CAS  Google Scholar 

  19. Schneider-Stock R, Boltze C, Lasota J, et al. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 2005; 11(2 Pt 1):638–45

    PubMed  CAS  Google Scholar 

  20. Schneider-Stock R, Boltze C, Lasota J, Miettinen M, Peters B, Pross M, Roessner A, Gunther T. High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol 2003; 21(9):1688–97

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura N, Yamamoto H, Yao T, et al. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol 2005; 36(7):828–37

    Article  PubMed  CAS  Google Scholar 

  22. Carrillo R, Candia A, Rodriguez-Peralto JL, Caz V. Prognostic significance of DNA ploidy and proliferative index (MIB-1 index) in gastrointestinal stromal tumors. Hum Pathol 1997; 28(2):160–5

    Article  PubMed  CAS  Google Scholar 

  23. Hasegawa T, Matsuno Y, Shimoda T, Hirohashi S. Gastrointestinal stromal tumor: consistent CD117 immunostaining for diagnosis, and prognostic classification based on tumor size and MIB-1 grade. Hum Pathol 2002; 33(6):669–76

    Article  PubMed  Google Scholar 

  24. Rudolph P, Gloeckner K, Parwaresch R, Harms D, Schmidt D. Immunophenotype, proliferation, DNA ploidy, and biological behavior of gastrointestinal stromal tumors: a multivariate clinicopathologic study. Hum Pathol 1998; 29(8):791–800

    Article  PubMed  CAS  Google Scholar 

  25. Wong NA, Young R, Malcomson RD, et al. Prognostic indicators for gastrointestinal stromal tumours: a clinicopathological and immunohistochemical study of 108 resected cases of the stomach. Histopathology 2003; 43(2):118–26

    Article  PubMed  CAS  Google Scholar 

  26. Dudderidge TJ, Stoeber K, Loddo M, Atkinson G, Fanshawe T, Griffiths DF, Williams GH. Mcm2, Geminin, and KI67 define proliferative state and are prognostic markers in renal cell carcinoma. Clin Cancer Res 2005; 11(7):2510–7

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez MA, Pinder SE, Callagy G, et al. Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J Clin Oncol 2003; 21(23):4306–13

    Article  PubMed  CAS  Google Scholar 

  28. Tachibana KE, Gonzalez MA, Coleman N. Cell-cycle-dependent regulation of DNA replication and its relevance to cancer pathology. J Pathol 2005; 205(2):123–9

    Article  PubMed  CAS  Google Scholar 

  29. MacCallum DE, Hall PA. The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle. J Pathol 2000; 190(5):537–44

    Article  PubMed  CAS  Google Scholar 

  30. Blow JJ, Dutta A. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 2005; 6(6):476–486

    Article  PubMed  CAS  Google Scholar 

  31. Kato H, Miyazaki T, Fukai Y, et al. A new proliferation marker, minichromosome maintenance protein 2, is associated with tumor aggressiveness in esophageal squamous cell carcinoma. J Surg Oncol 2003; 84(1):24–30

    Article  PubMed  CAS  Google Scholar 

  32. Huang HY, Kang HY, Li CF, Eng HL, Chou SC, Lin CN, Hsiung CY. Skp2 overexpression is highly representative of intrinsic biological aggressiveness and independently associated with poor prognosis in primary localized myxofibrosarcomas. Clin Cancer Res 2006; 12(2):487–98

    Article  PubMed  CAS  Google Scholar 

  33. Powell EL, Leoni LM, Canto MI, et al. Concordant loss of MTAP and p16/CDKN2A expression in gastroesophageal carcinogenesis: evidence of homozygous deletion in esophageal noninvasive precursor lesions and therapeutic implications. Am J Surg Pathol 2005; 29(11):1497–504

    Article  PubMed  Google Scholar 

  34. Saund MS, Demetri GD, Ashley SW. Gastrointestinal stromal tumors (GISTs). Curr Opin Gastroenterol 2004; 20(2):89–94

    Article  PubMed  Google Scholar 

  35. Emory TS, Sobin LH, Lukes L, Lee DH, O’Leary TJ. Prognosis of gastrointestinal smooth-muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol 1999;23(1):82–7

    Article  PubMed  CAS  Google Scholar 

  36. Miettinen M, Makhlouf H, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol 2006; 30(4):477–89

    Article  PubMed  Google Scholar 

  37. Nilsson B, Bumming P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era—a population-based study in western Sweden. Cancer 2005; 103(4):821–9

    Article  PubMed  Google Scholar 

  38. DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 2000; 231(1):51–8

    Article  PubMed  CAS  Google Scholar 

  39. Cooper PN, Quirke P, Hardy GJ, Dixon MF. A flow cytometric, clinical, and histological study of stromal neoplasms of the gastrointestinal tract. Am J Surg Pathol 1992; 16(2):163–70

    Article  PubMed  CAS  Google Scholar 

  40. Feakins RM. The expression of p53 and bcl-2 in gastrointestinal stromal tumours is associated with anatomical site, and p53 expression is associated with grade and clinical outcome. Histopathology 2005; 46(3):270–9

    Article  PubMed  CAS  Google Scholar 

  41. Singer S, Rubin BP, Lux ML, Chen CJ, Demetri GD, Fletcher CD, Fletcher JA. Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol 2002; 20(18):3898–905

    Article  PubMed  CAS  Google Scholar 

  42. Perrone F, Tamborini E, Dagrada GP, et al. 9p21 locus analysis in high-risk gastrointestinal stromal tumors characterized for c-kit and platelet-derived growth factor receptor alpha gene alterations. Cancer 2005; 104(1):159–69

    Article  PubMed  CAS  Google Scholar 

  43. Straume O, Sviland L, Akslen LA. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res 2000; 6(5):1845–53

    PubMed  CAS  Google Scholar 

  44. Talve L, Sauroja I, Collan Y, Punnonen K, Ekfors T. Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 1997; 74(3):255–9

    Article  PubMed  CAS  Google Scholar 

  45. Salvesen HB, Das S, Akslen LA. Loss of nuclear p16 protein expression is not associated with promoter methylation but defines a subgroup of aggressive endometrial carcinomas with poor prognosis. Clin Cancer Res 2000; 6(1):153–9

    PubMed  CAS  Google Scholar 

  46. Klein WM, Hruban RH, Klein-Szanto AJ, Wilentz RE. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Mod Pathol 2002; 15(4):441–7

    Article  PubMed  Google Scholar 

  47. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998; 95(20):11891–6

    Article  PubMed  CAS  Google Scholar 

  48. Lee JH, Park SJ, Abraham SC, et al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene 2004; 23(26):4646–54

    Article  PubMed  CAS  Google Scholar 

  49. von Zeidler SV, Miracca EC, Nagai MA, Birman EG. Hypermethylation of the p16 gene in normal oral mucosa of smokers. Int J Mol Med 2004; 14(5):807–11

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Science Council, Taiwan (NSC93-2320-B-182A-011) and Chang Gung Memorial Hospital (CMRPG83019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Yeh Hsiung MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HY., Huang, WW., Lin, CN. et al. Immunohistochemical Expression of p16INK4A, Ki-67, and Mcm2 Proteins in Gastrointestinal Stromal Tumors: Prognostic Implications and Correlations with Risk Stratification of NIH Consensus Criteria. Ann Surg Oncol 13, 1633–1644 (2006). https://doi.org/10.1245/s10434-006-9188-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9188-4

Keywords

Navigation