Skip to main content

Advertisement

Log in

Opa Interacting Protein 5 (OIP5) Is a Novel Cancer-testis Specific Gene in Gastric Cancer

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Identification of novel cancer-specific antigens is important for the advancement of immunotherapy. Our aim was to identify cancer-specific genes in gastric cancer.

Methods

Using cDNA microarray analysis, we detected genes overexpressed specifically in gastric cancer cells. The expression levels of selected genes, including OIP5, was confirmed by real time RT-PCR analysis in tumor/normal paired bulk samples of 58 clinical cases. The expression levels of selected genes in normal tissues were also determined with a human total RNA master panel. We also compared the expression status of OIP5 with that of the other known cancer-testis specific genes.

Results

Twenty-two genes were determined to be upregulated in gastric cancer cells. Among these, three genes (CDC6, Exo1, and OIP5) were selected and confirmed to be upregulated in the tumor tissue compared to normal tissue. A human total RNA master panel demonstrated that OIP5, but not Exo1 or CDC6, showed high specificity in testis. Thus OIP5 may be considered a cancer-testis specific gene. In 58 clinical cases of gastric cancer examined, we found OIP5 gene expression in 27 cases (47%). Thirteen of these 27 cases showed no expression of the known cancer specific genes such as MAGE-1, MAGE-3 or NY-ESO-1.

Conclusions

Using a combination of LMD and microarray, we identified OIP5 as a cancer-testis specific gene. Further expression analysis in a set of clinical cases revealed that OIP5 may be a novel immunotherapy target for patients with gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

Abbreviations

OIP5 :

Opa interacting protein 5

CTA:

cancer testis antigen

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

LMD:

laser microdissection

RT-PCR:

reverse transcriptase-polymerase chain reaction

References

  1. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics. CA Cancer J Clin 2004; 54:8–29

    Article  PubMed  Google Scholar 

  2. Sadanaga N, Nagashima H, Mashino K, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 2001; 7:2277–84

    PubMed  CAS  Google Scholar 

  3. Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 1998; 46:82–7

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu K, Thomas EK, Giedlin M, Mule JJ. Enhancement of tumor lysate- and peptide-pulsed dendritic cell-based vaccines by the addition of foreign helper protein. Cancer Res 2001; 61:2618–24

    PubMed  CAS  Google Scholar 

  5. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254:1643–7

    Article  PubMed  Google Scholar 

  6. Inoue H, Mori M, Honda M, et al. The expression of tumor-rejection antigen ‘MAGE’ genas in human gastric carcinoma. Gastroenterology 1995; 109:1522–5

    Article  PubMed  CAS  Google Scholar 

  7. Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S. Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Association with angiogenesis and tumor progression. Cancer 1997; 79:206–13

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka F, Fujie T, Tahara K, et al. Induction of antitumor CTLs with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 1997; 57:4465–8

    PubMed  CAS  Google Scholar 

  9. Fujie T, Tahara K, Tanaka F, Mori M, Takesako K, Akiyoshi T. A MAGE-1-encoded HLA-A24-binding synthetic peptide induces specific anti-tumor cytotoxic T lymphocytes. Int J Cancer 1999; 80:169–72

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Wu XJ, Zhao AL, Yuan YH, Chen YT, Jungbluth AA, et al. Cancer/testis antigen expression and autologous humoral immunity to NY-ESO-1 in gastric cancer. Cancer Immunol 2004; 4:11

    Google Scholar 

  11. Laura J. van ‘t Veer, Hongyue Dai, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415:530–6

  12. Quackenbush J. Microarray data normalization and transformation. Nat Genet 2002;32:496–501

    Article  PubMed  CAS  Google Scholar 

  13. Mori M, Mimori K, Inoue H, Barnard GF, Tsuji K, Nanbara S. Detection of cancer micrometastases in lymph nodes by reverse transcriptase-polymerase chain reaction. Cancer Res 1995; 55:3417–20

    PubMed  CAS  Google Scholar 

  14. Ogawa K, Utsunomiya T, Mimori K, et al. Clinical significance of human kallikrein gene 6 messenger RNA expression in colorectal cancer. Clin Cancer Res 2005; 11:2889–93

    Article  PubMed  CAS  Google Scholar 

  15. Mashino K, Sadanaga N, Tanaka F, et al. Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas. Br J Cancer 2001; 85:713–20

    Article  PubMed  CAS  Google Scholar 

  16. Jungblunth AA, Stockert E, Chen YT, et al. Monoclonal antibody MA454 reveals a heteroeneous expression pattern of MAGE-1 antigen in formalin-mixed paraffin embedded lung tumours. Br J Cancer 2000; 83:493–7

    Article  Google Scholar 

  17. Sadanaga N, Nagashima H, Tahara K, Yoshikawa Y, Mori M. The heterogeneous expression of MAGE-3 protein: difference between primary lesions and metastatic lymph nodes in gastric carcionoma. Oncol Rep 1999; 6:975–7

    PubMed  CAS  Google Scholar 

  18. Cross SS, Hamdy FC, Deloulme JC, Rehman I. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 2005; 46:256–69

    Article  PubMed  CAS  Google Scholar 

  19. Ji H, Liu YE, Jia T, et al. Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 1997; 57:759-–64

    PubMed  CAS  Google Scholar 

  20. Bruening W, Giasson BI, Klein-Szanto AJ, Lee VM, Trojanowski JQ, Godwin AK. Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer 2000; 88:2154–63

    Article  PubMed  CAS  Google Scholar 

  21. El-Rifai W, Moskaluk CA, Abdrabbo MK, Harper J, Yoshida C, Riggins GJ, Frierson Jr HF, Powell SM. Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 2002; 62:6823–6

    PubMed  CAS  Google Scholar 

  22. Yanagawa N, Tamura G, Honda T, Endoh M, Nishizuka S, Motoyama T. Demethylation of the synuclein gene CpG Island in primary gastric cancers and gastric cancer cell lines. Clin Cancer Res 2004; 10:2447–51

    Article  PubMed  CAS  Google Scholar 

  23. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci 2002; 7:1356–68

    Article  Google Scholar 

  24. Jia T, Liu YE, Liu J, Shi YE. Stimulation of breast cancer invasion and metastasis by synuclein . Cancer Res 1999; 59:742–7

    PubMed  CAS  Google Scholar 

  25. Pawlak A, Toussaint C, Levy I, Bulle F, Poyard M, Barouki R, Guellaen G. Characterization of a large population of mRNAs from human testis. Genomics 1995; 27:151–8

    Article  Google Scholar 

  26. Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 27:199–208

    Article  Google Scholar 

  27. Boon K, Edwards JB, Siu IM, et al. Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 2003; 22:7687–94

    Article  PubMed  CAS  Google Scholar 

  28. Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M. The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 2004; 10:4307–13

    Article  PubMed  CAS  Google Scholar 

  29. van Baren N, Chambost H, Ferrant A, et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 1998; 102:1376–9

    Article  PubMed  Google Scholar 

  30. Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R. The human tumor antigen prame is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122:835–47

    Article  PubMed  CAS  Google Scholar 

  31. Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 2002; 133:118–23

    Article  PubMed  CAS  Google Scholar 

  32. Steinbach D, Viehmann S, Zintl F, Gruhn B. PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 2002; 138:89–91

    Article  PubMed  CAS  Google Scholar 

  33. Tajeddine N, Gala JL, Louis M, Van Schoor M, Tombal B, Gailly P. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 2005; 65:7348–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. T. Shimooka, Ms. K. Ogata, Ms. M. Oda, Ms. N. Kasagi, and Ms. Y. Nakagawa for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori.

Additional information

Grant sponsors: CREST, JST; Uehara Memorial Foundation; Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research, grant numbers 17015032, 17109013, 17591411, 17591413, and 16390381; Health and Labour Sciences Research Grants; Third Term Comprehensive Control Research for Cancer, 16271201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, Y., Tanaka, F., Nagahara, H. et al. Opa Interacting Protein 5 (OIP5) Is a Novel Cancer-testis Specific Gene in Gastric Cancer. Ann Surg Oncol 14, 885–892 (2007). https://doi.org/10.1245/s10434-006-9121-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9121-x

Keywords

Navigation