Skip to main content
Log in

Comparison of Properties of Acetaminophen Tablets Prepared by Wet Granulation Using Freeze-Dried Versus Phase-Inversion Bacterial Cellulose as Diluent

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is an interesting material for drug delivery applications due to its high purity. This study aimed to compare the properties of tablets prepared by the wet granulation method using bacterial cellulose prepared by different methods as a diluent, using acetaminophen as a model drug. BC used as diluents were prepared using two different methods: freeze-drying (BC-FD) and phase-inversion (BC-PI), and their characteristics were analyzed and compared with that of commercial microcrystalline cellulose PH 101 (Comprecel® M101). Acetaminophen tablets were prepared by wet granulation using BC-FD, BC-PI, or Comprecel® M101 as diluents, and their tablet properties were examined. The result showed that the morphology, polymorph, and crystallinity of BC-PI and Comprecel® M101 were similar but they were different compared with that of BC-FD. Tablets could be successfully formed using BC-PI and Comprecel® M101 as diluents without any physical defects but the tablet prepared using BC-FD as diluent appeared chipped edge. The characteristics (thickness, weight variation, hardness, friability, disintegration, drug content, and dissolution) of the tablets prepared using BC-PI diluent were also similar to those prepared using Comprecel® M101 diluent, but those of BC-FD diluent were inferior. This indicates that BC prepared in BC-PI can potentially be used as a diluent for tablets prepared by wet granulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, et al. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol. 2016;93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056.

    Article  CAS  PubMed  Google Scholar 

  2. Hare C, Bonakdar T, Ghadiri M, Strong J. Impact breakage of pharmaceutical tablets. Int J Pharm. 2018;536(1):370–6. https://doi.org/10.1016/j.ijpharm.2017.11.066.

    Article  CAS  PubMed  Google Scholar 

  3. van der Merwe J, Steenekamp J, Steyn D, Hamman J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics. 2020;12(5):393. https://doi.org/10.3390/pharmaceutics12050393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vaidya MP, Avachat AM. Investigation of the impact of insoluble diluents on the compression and release properties of matrix based sustained release tablets. Powder Technol. 2011;214(3):375–81. https://doi.org/10.1016/j.powtec.2011.08.035.

    Article  CAS  Google Scholar 

  5. Kulkarni P, Dixit SA, Singh U. Evaluation of bacterial cellulose produced form Acetobacter xylinum as pharmaceutical excipient. Am J Drug Discov Dev. 2012;2:72–86. https://doi.org/10.3923/ajdd.2012.72.86.

    Article  CAS  Google Scholar 

  6. Tobyn MJ, McCarthy GP, Staniforth JN, Edge S. Physicochemical comparison between microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm. 1998;169(2):183–94. https://doi.org/10.1016/S0378-5173(98)00127-6.

    Article  CAS  Google Scholar 

  7. Rojas J, López A, Gamboa Y, González C, Montoya F. Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II. Chem Pharm Bull. 2011;59(5):603–7. https://doi.org/10.1248/cpb.59.603.

    Article  CAS  Google Scholar 

  8. Zhao H, Shi C, Zhao L, Wang Y, Shen L. Influences of different microcrystalline cellulose (MCC) grades on tablet quality and compression behavior of MCC-lactose binary mixtures. J Drug Deliv Sci Technol. 2022;77:103893. https://doi.org/10.1016/j.jddst.2022.103893.

    Article  CAS  Google Scholar 

  9. Lin S-P, Loira Calvar I, Catchmark JM, Liu J-R, Demirci A, Cheng K-C. Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013;20:2191–219. https://doi.org/10.1007/s10570-013-9994-3.

    Article  CAS  Google Scholar 

  10. Belali NG, Chaerunisaa AY, Rusdiana T. Isolation and characterization of microcrystalline cellulose derived from plants as excipient in tablet: A review. Indones J Pharm. 2019;1:23–9. https://doi.org/10.24198/idjp.v1i2.21515.

    Article  Google Scholar 

  11. Lupidi G, Pastore G, Marcantoni E, Gabrielli S. Recent developments in chemical derivatization of microcrystalline cellulose (MCC): Pre-treatments, functionalization, and applications. Molecules. 2023;28:2009. https://doi.org/10.3390/molecules28052009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Viera-Herrera C, Santamaría-Aguirre J, Vizuete K, Debut A, Whitehead DC, Alexis F. Microcrystalline cellulose extracted from native plants as an excipient for solid dosage formulations in drug delivery. Nanomaterials. 2020;10(5):975. https://doi.org/10.3390/nano10050975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wohlert M, Benselfelt T, Wågberg L, Furó I, Berglund LA, Wohlert J. Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose. 2022;29:1–23. https://doi.org/10.1007/s10570-021-04325-4.

    Article  CAS  Google Scholar 

  14. Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose: fermentative production and applications. Food Technol Biotechnol. 2009;47(2):107–24.

    CAS  Google Scholar 

  15. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym. 2009;76:333–5. https://doi.org/10.1016/j.carbpol.2008.11.009.

    Article  CAS  Google Scholar 

  16. Jantarat C, Muenraya P, Srivaro S, Nawakitrangsan A, Promsornpason K. Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. RSC Adv. 2021;11:37354–65. https://doi.org/10.1039/D1RA07761A.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. Microbial cellulose—the natural power to heal wounds. Biomaterials. 2006;27:145–51. https://doi.org/10.1016/j.biomaterials.2005.07.035.

    Article  CAS  PubMed  Google Scholar 

  18. Almeida I, Pereira T, Silva N, Gomes F, Silvestre A, Freire C, et al. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur J Pharm Biopharm. 2014;86:332–6. https://doi.org/10.1016/j.ejpb.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  19. Ullah H, Wahid F, Santos HA, Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym. 2016;150:330–52. https://doi.org/10.1016/j.carbpol.2016.05.029.

    Article  CAS  PubMed  Google Scholar 

  20. Sahudin S, Hussain M, Abd Rahman S, Hamdan MAS, Abd Rahim MR. The use of nata de coco derived bacterial cellulose as a potential excipient for directly compressed tablets. Int Pharm Acta. 2020;3(1):3e2-1-5. https://doi.org/10.22037/ipa.v3i1.29058.

    Article  CAS  Google Scholar 

  21. Zhang CJ, Wang L, Zhao JC, Zhu P. Effect of drying methods on structure and mechanical properties of bacterial cellulose films. Adv Mat Res. 2011;239:2667–70. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2667.

    Article  CAS  Google Scholar 

  22. Lee K-Y, Bismarck A. Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose. 2012;19:891–900. https://doi.org/10.1007/s10570-012-9680-x.

    Article  CAS  Google Scholar 

  23. Shanmugam S. Granulation techniques and technologies: recent progresses. Bioimpacts. 2015;5:55–63. https://doi.org/10.15171/bi.2015.04.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kushner J 4th, Langdon BA, Hiller JI, Carlson GT. Examining the impact of excipient material property variation on drug product quality attributes: a quality-by-design study for a roller compacted, immediate release tablet. J Pharm Sci. 2011;100(6):2222–39. https://doi.org/10.1002/jps.22455.

    Article  CAS  PubMed  Google Scholar 

  25. Jantarat C, Attakitmongkol K, Nichsapa S, Sirathanarun P, Srivaro S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. J Biomater Sci Polym Ed. 2020;31:1961–76. https://doi.org/10.1080/09205063.2020.1787602.

    Article  CAS  PubMed  Google Scholar 

  26. Doménech-Carbo MT, Aura-Castro E. Evaluation of the phase inversion process as an application method for synthetic polymers in conservation work. Stud Conserv. 1999;44:19–28. https://doi.org/10.2307/1506692.

    Article  Google Scholar 

  27. Tekin FS, Çulfaz-Emecen PZ. Controlling Cellulose Membrane Performance via Solvent Choice during Precursor Membrane Formation. ACS Appl Polym Mater. 2023;5:2185–94. https://doi.org/10.1021/acsapm.2c02185.

    Article  CAS  Google Scholar 

  28. Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci. 2005;5:539–48. https://doi.org/10.1002/mabi.200400222.

    Article  CAS  PubMed  Google Scholar 

  29. United States Pharmacopeia. General Chapter, 〈2091〉 Weight Variation of Dietary Supplements. Maryland (MD): Rockville; 2023.

  30. United States Pharmacopeia. General Chapter, 〈1216〉 Tablet Friability. Maryland (MD): Rockville; 2022.

  31. United States Pharmacopeia. General Chapter, 〈701〉 Disintegration. Maryland (MD): Rockville; 2023.

  32. United States Pharmacopeia (2023). USP Monographs, Acetaminophen Tablets. Maryland (MD): Rockville; 2023.

  33. Khan GM, Meidan VM. Drug release kinetics from tablet matrices based upon ethylcellulose ether-derivatives: a comparison between different formulations. Drug Dev Ind Pharm. 2007;33:627–39. https://doi.org/10.1080/03639040601179954.

    Article  CAS  PubMed  Google Scholar 

  34. Ilgin P, Ozay H, Ozay O. A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile. Eur Polym J. 2019;113:244–53. https://doi.org/10.1016/j.eurpolymj.2019.02.003.

    Article  CAS  Google Scholar 

  35. Karthikeyan M, Deepa M, Bassim E, Rahna C, Raj KS. Investigation of kinetic drug release characteristics and in vitro evaluation of sustained-release matrix tablets of a selective COX-2 inhibitor for rheumatic diseases. J Pharm Innov. 2021;16:551–7. https://doi.org/10.1007/s12247-020-09459-9.

    Article  Google Scholar 

  36. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6.

    Article  CAS  Google Scholar 

  37. Chunshom N, Chuysinuan P, Techasakul S, Ummartyotin S. Dried-state bacterial cellulose (Acetobacter xylinum) and polyvinyl-alcohol-based hydrogel: An approach to a personal care material. J Sci: Adv Mater Devices. 2018;3:296–302. https://doi.org/10.1016/j.jsamd.2018.06.004.

    Article  Google Scholar 

  38. Tong Y, Huang S, Meng X, Wang Y. Aqueous-cellulose-solvent-derived changes in cellulose nanocrystal structure and reinforcing effects. Polymers. 2023;15(14):3030. https://doi.org/10.3390/polym15143030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ul-Islam M, Khan T, Park JK. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym. 2012;88:596–603. https://doi.org/10.1016/j.carbpol.2012.01.006.

    Article  CAS  Google Scholar 

  40. Rebelo AR, Archer AJ, Chen X, Liu C, Yang G, Liu Y. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater. 2018;19:203–11. https://doi.org/10.1080/14686996.2018.1430981.

    Article  CAS  Google Scholar 

  41. Zhou J, Zhang L, Cai J, Shu H. Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membr Sci. 2002;210:77–90. https://doi.org/10.1016/S0376-7388(02)00377-0.

    Article  CAS  Google Scholar 

  42. Shanshan G, Jianqing W, Zhengwei J. Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym. 2012;87:1020–5. https://doi.org/10.1016/j.carbpol.2011.06.040.

    Article  CAS  Google Scholar 

  43. Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. The Arabidopsis Book/American Society of Plant Biologists 2014;12: e0169. https://doi.org/10.1199/tab.0169.

  44. Morán JI, Alvarez VA, Cyras VP, Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15:149–59. https://doi.org/10.1007/s10570-007-9145-9.

    Article  CAS  Google Scholar 

  45. Le Pevelen D, Tranter G. FT-IR and raman spectroscopies, polymorphism applications, In: Encyclopedia of Spectroscopy and Spectrometry. New York (NY): Elsevier; 2016.

  46. Mohammadkazemi F. Surface properties of bacterial nanocellulose using spectroscopic methods and X-ray diffraction. Am J Appl Chem. 2015;1:10–3. https://doi.org/10.11648/j.ajaic.20170101.13.

    Article  Google Scholar 

  47. Katepetch C, Rujiravanit R, Tamura H. Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose. 2013;20:1275–92. https://doi.org/10.1007/s10570-013-9892-8.

    Article  CAS  Google Scholar 

  48. Bian J, Peng F, Peng X-P, Xiao X, Peng P, Xu F, et al. Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym. 2014;100:211–7. https://doi.org/10.1016/j.carbpol.2013.02.059.

    Article  CAS  PubMed  Google Scholar 

  49. French AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. 2014;21:885–96. https://doi.org/10.1007/s10570-013-0030-4.

    Article  CAS  Google Scholar 

  50. Gong J, Li J, Xu J, Xiang Z, Mo L. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 2017;7:33486–93. https://doi.org/10.1039/C7RA06222B.

    Article  ADS  CAS  Google Scholar 

  51. El Oudiani A, Chaabouni Y, Msahli S, Sakli F. Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym. 2011;86:1221–9. https://doi.org/10.1016/j.carbpol.2011.06.037.

    Article  CAS  Google Scholar 

  52. Leng C, Li K, Tian Z, Si Y, Huang H, Li J, et al. Theoretical study of cellulose II nanocrystals with different exposed facets. Sci Rep. 2021;11:21871. https://doi.org/10.1038/s41598-021-01438-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Betlej I, Zakaria S, Krajewski K, Boruszewski P. Bacterial cellulose - Properties and its potential application. Sains Malays. 2021;50:493–505. https://doi.org/10.17576/jsm-2021-5002-20.

    Article  CAS  Google Scholar 

  54. Tofiq M, Nordström J, Persson AS, Alderborn G. Effect of excipient properties and blend ratio on the compression properties of dry granulated particles prepared from microcrystalline cellulose and lactose. Powder Technol. 2022;399:117207. https://doi.org/10.1016/j.powtec.2022.117207.

    Article  CAS  Google Scholar 

  55. Parrot EL. Solid pharmaceuticals, In: Pharmaceutical technology. 3rd ed. Minnesota (MN): Burgess Publishing Company; 1971, pp. 58–106.

  56. Teixeira MT, Sa-Barreto LL, Silva IC, Gratieri T, Gelfuso GM, Marreto RN, et al. The influence of porosity on tablet subdivision. Particuology. 2020;53:192–6. https://doi.org/10.1016/j.partic.2020.06.001.

    Article  CAS  Google Scholar 

  57. Johansson B, Alderborn G. The effect of shape and porosity on the compression behaviour and tablet forming ability of granular materials formed from microcrystalline cellulose. Eur J Pharm Biopharm. 2001;52:347–57. https://doi.org/10.1016/s0939-6411(01)00186-2.

    Article  CAS  PubMed  Google Scholar 

  58. Jiménez-Castellanos MR, Zia H, Rhodes CT. Assessment of an in vitro method for measuring the bioadhesiveness of tablets. Int J Pharm. 1993;89:223–8. https://doi.org/10.1016/0378-5173(93)90247-D.

    Article  Google Scholar 

  59. Corveleyn S, Remon JP. Formulation and production of rapidly disintegrating tablets by lyophilisation using hydrochlorothiazide as a model drug. Int J Pharm. 1997;152:215–25. https://doi.org/10.1016/S0378-5173(97)00092-6.

    Article  CAS  Google Scholar 

  60. Khan GM, Zhu J-B. Studies on drug release kinetics from ibuprofen–carbomer hydrophilic matrix tablets: influence of co-excipients on release rate of the drug. J Control Release. 1999;57:197–203. https://doi.org/10.1016/s0168-3659(98)00122-9.

    Article  CAS  PubMed  Google Scholar 

  61. Kitazawa S, Johno I, Ito Y, Teramura S, Okada J. Effects of hardness on the disintegration time and the dissolution rate of uncoated caffeine tablets. J Pharm Pharmacol. 1975;27:765–70. https://doi.org/10.1111/j.2042-7158.1975.tb09397.x.

    Article  CAS  PubMed  Google Scholar 

  62. Markl D, Zeitler JA. A review of disintegration mechanisms and measurement techniques. Pharm Res. 2017;34:890–917. https://doi.org/10.1007/s11095-017-2129-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci. 2015;66:163–72. https://doi.org/10.1016/j.ejps.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  64. Abdan KB, Yong SC, Chiang ECW, Talib RA, Hui TC, Hao LC. Barrier properties, antimicrobial and antifungal activities of chitin and chitosan-based IPNs, gels, blends, composites, and nanocomposites, In: Handbook of chitin and chitosan. New York (NY): Elsevier; 2020. p. 175–227.

  65. Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Cambridge: Woodhead Publishing; 2015.

    Google Scholar 

Download references

Funding

This work was supported by Walailak University under the new strategic research project (P2P) grant number CGS-P2P-2564–065.

Author information

Authors and Affiliations

Authors

Contributions

SK: conceptualization, methodology, investigation, data analysis, visualization, writing – original draft; JC: conceptualization, methodology, investigation, data analysis, visualization, writing – review and editing; WS and TS: methodology, investigation, data analysis, writing – review and editing; CJ: funding acquisition and project administration, conceptualization, methodology, investigation, data analysis, visualization, writing – review and editing; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chutima Jantarat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaewpradit, S., Chingunpitak, J., Samhadthai, W. et al. Comparison of Properties of Acetaminophen Tablets Prepared by Wet Granulation Using Freeze-Dried Versus Phase-Inversion Bacterial Cellulose as Diluent. AAPS PharmSciTech 25, 32 (2024). https://doi.org/10.1208/s12249-024-02752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02752-7

Keywords

Navigation