Skip to main content

Advertisement

Log in

A Rapid 3-Day Excipient Screening Methodology and its Application in Identifying Chemical Stabilizers for Solid Formulations with Mixed Mechanisms of Degradation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study outlines a practical approach for assessing chemical instability by heating the drug-excipient binary mixtures or multi-excipient formulations at 75°C for 3 days before characterization. Differentiating itself from other excipient compatibility methods, our methodology necessitates a saturated aqueous slurry rather than arbitrarily fixed water content. This allows bulk and surface water in the excipient to contribute to drug degradation. The synergistic impact of surface water and elevated temperature expedites degradation kinetics, resulting in accelerated data generation. Among excipient compatibility methods available, our method is quantitative and merges with traditionally used methodologies. The devised nomograph enables extrapolation of shelf life at 20°C from experimental data obtained at 75°C. This methodology also helped identify stabilizers for the drug NVS-1 where traditional excipient compatibility programs had failed. Incorporation of monovalent salts, such as sodium/potassium chloride and sodium bicarbonate at 5% w/w, significantly enhanced the chemical stability of NVS-1, ensuring stable tablet formulations. Our hypothesis posits that stabilization is due to increased ionic strength in the slurry, which stabilizes an induced dipole within the polar NVS-1 drug. Additionally, the presence of ions in the moisture layer is anticipated to stabilize π-π stacking of two planar aromatic NVS-1 molecules. The expedited generation of experimental data allowed the identification of inorganic salts to supplement a standard excipient compatibility screening panel. Considering the economic implications of stability testing methodologies in effort, cost, and duration, a faster turnaround in chemical stability data enhances formulation selection. This ultimately facilitates the development of drug formulations with greater efficiency without delays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q1A(R2) Stability testing of new drug substances and products. ICH Guidance for industry, Geneva. 2003. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q1ar2-stability-testing-new-drug-substances-and-products. Accessed 21 Sept 2023.

  2. Pani NR, Nath LK, Acharya S. Compatibility studies of nateglinide with excipients in immediate release tablets. Acta Pharm. 2011;561:237–47.

    Article  Google Scholar 

  3. Malan CEP, de Villiers MM, Lötter AP. Evaluation of compatibility of tablet excipients with albendazole and closantel using DSC and HPLC. Drug Dev and Ind Pharm. 1997;23:533–7.

    Article  CAS  Google Scholar 

  4. Malan CEP, de Villiers MM, Lötter AP. Application of differential scanning calorimetry and high performance liquid chromatography to determine the effects of mixture composition and preparation during the evaluation of niclosamide-excipient compatibility. J Pharm Biomed Anal. 1997;15:549–57.

    Article  CAS  PubMed  Google Scholar 

  5. Araújo AAS, Storpirtis S, Mercuri LP, Carvalho FMS, Filho MDS, Matos JR. Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms. Int J Pharm. 2003;260:303–14.

    Article  PubMed  Google Scholar 

  6. Tomassetti M, Catalani A, Rossi V, Vecchio S. Thermal analysis study of the interactions between acetaminophen and excipients in solid dosage forms and in some binary mixtures. J Pharm Biomed Anal. 2005;37:949–55.

    Article  CAS  PubMed  Google Scholar 

  7. Thumma S, Repka MA. Compatibility studies of promethazine hydrochloride with tablet excipients by means of thermal and non-thermal methods. Pharmazie. 2009;64:183–8.

    CAS  PubMed  Google Scholar 

  8. Late SG, Banga AK. Thermal and non-thermal methods to evaluate compatibility of granisetron hydrochloride with tablet excipients. Pharmazie. 2008;63:453–8.

    CAS  PubMed  Google Scholar 

  9. Laszcz M, Kosmacinska B, Smigielska B, Glice M, Maruszak W, Groman A, et al. Study on compatibility on imatinib mesylate with pharmaceutical excipients. J Therm Anal Calorim. 2007;88:305–10.

    Article  CAS  Google Scholar 

  10. Marini A, Berbenni V, Moioli S, Bruni G, Cofrancesco P, Margheritis C, et al. Drug-excipient compatibility studies by physico-chemical techniques – the case of indomethacin. J Therm Anal Calorim. 2003;73:529–45.

    Article  CAS  Google Scholar 

  11. Sims JL, Carreira JA, Carrier DJ, Crabtree SR, Easton L, Hancock SA, et al. A new approach to accelerated drug-excipient compatibility testing. Pham Dev Technol. 2003;8(2):119–26.

    Article  CAS  Google Scholar 

  12. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, et al. Compatibility studies of acyclovir and lactose in physical mixtures. Eur J Pharm Biopharm. 2009;73:404–13.

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt EA, Peck K, Sun Y, Geoffroy J-M. Rapid, practical and predictive excipient compatibility screening using isothermal microcalorimetry. Thermochim Acta. 2001;380:175–83.

    Article  CAS  Google Scholar 

  14. Lubach JW, Hau J. Solid-State NMR investigation of drug-excipient interactions and phase behavior in indomethacin-eudragit E amorphous solid dispersions. Pharm Res. 2018;35(3):65.

    Article  PubMed  Google Scholar 

  15. Song Y, Yang X, Chen X, Nie H, Byrn SR, Lubach JW. Investigation of drug–excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2015;12(3):857–66.

    Article  CAS  PubMed  Google Scholar 

  16. Brusač E, Jeličić M-L, Cvetnić M, Amidžić Klarić D, Nigović B, Mornar A. Comprehensive approach to compatibility testing using chromatographic, thermal and spectroscopic techniques: evaluation of potential for a Monolayer Fixed-dose combination of 6-mercaptopurine and folic acid. Pharmaceuticals (Basel). 2021;14(3):274.

    Article  PubMed  Google Scholar 

  17. da Silva EP, Pereira MAV, de Barros Lima IP, Barros Lima NGP, Barbosa EG, Soares Aragao CF, et al. Compatibility study between atorvastatin and excipients using DSC and FTIR. J Therm Anal Calorim. 2016;123:933–9.

    Article  Google Scholar 

  18. Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs - a review. J Pharm Anal. 2014;4(3):159–65.

    Article  CAS  PubMed  Google Scholar 

  19. Alsante KM, Martin L, Baertschi S. A stress testing benchmarking study. Pharm Technology. 2003;27:60–72.

    CAS  Google Scholar 

  20. Crowley PJ. Excipients as stabilizers. Pharm Sci Technol Today. 1999;2(6):237–43.

    Article  Google Scholar 

  21. Callahan JC, Cleary GW, Elefant M, Kaplan G, Kensler T, Nash RA. Equilibrium moisture content of pharmaceutical excipients. Drug Dev and Ind Pharm. 1982;8(3):355–69.

    Article  CAS  Google Scholar 

  22. Yoshioka S, Aso Y, Terao T. Effect of water mobility on drug hydrolysis rates in gelatin gels. Pharm Res. 1992;9:607–12.

    Article  CAS  PubMed  Google Scholar 

  23. Aso Y, Sufang T, Yoshioka S, Kojima S. Amount of mobile water estimated from 2H spin-lattice relaxation time, and its effects on the stability of cephalothin in mixtures with pharmaceutical excipients. Drug Stab. 1997;1(4):237–42.

    CAS  Google Scholar 

  24. Tong P, Zografi G. Effects of water vapor absorption on the physical and chemical stability of amorphous sodium indomethacin. AAPS PharmSciTech. 2004;5(2):9–16.

    Article  PubMed Central  Google Scholar 

  25. Ahlneck C, Zografi G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Int J Pharm. 1990;62(2–3):87–95.

    Article  CAS  Google Scholar 

  26. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11:471–7.

    Article  CAS  PubMed  Google Scholar 

  27. Chemburkar PB, Smyth RD, Buehler JD, Shah PB, Joslin RS, Polk A, et al. Correlation between dissolution characteristics and absorption of methaqualone from solid dosage forms. J Pharm Sci. 1976;65(4):529–33.

    Article  CAS  PubMed  Google Scholar 

  28. Horhota ST, Burgio J, Lonski L, Rhodes CT. Effect of storage at specified temperature and humidity on properties of three directly compressible tablet formulations. J Pharm Sci. 1976;65(12):1746–9.

    Article  CAS  PubMed  Google Scholar 

  29. Waterman KC, MacDonald BC. Package selection for moisture protection for solid, oral drug products. J Pharm Sci. 2010;99(11):4437–52.

    Article  CAS  PubMed  Google Scholar 

  30. Veronica N, Heng PWS, Liew CV. Relative humidity cycling: implications on the stability of moisture-sensitive drugs in solid pharmaceutical products. Mol Pharm. 2023;20(2):1072–85.

    Article  CAS  PubMed  Google Scholar 

  31. Teraoka R, Otsuka M, Matsuda Y. Effects of temperature and relative humidity on the solid-state chemical stability of ranitidine hydrochloride. J Pharm Sci. 1993;82(6):601–4.

    Article  CAS  PubMed  Google Scholar 

  32. Genton D, Kesselring UW. Effect of temperature and relative humidity on nitrazepam stability in solid state. J Pharm Sci. 1977;66(5):676–80.

    Article  CAS  PubMed  Google Scholar 

  33. Kontny MJ, Grandolfi GP, Zografi G. Water vapor sorption of water-soluble substances: studies of crystalline solids below their critical relative humidities. Pharm Res. 1987;4(2):104–12.

    Article  CAS  PubMed  Google Scholar 

  34. Singh S, Bhutani H, Mariappan TT, Kaur H, Bajaj M, Pakhale S. Behavior of uptake of moisture by drugs and excipients under accelerated conditions of temperature and humidity in the absence and the presence of light. 1. Pure anti-tuberculosis drugs and their combinations. Int J Pharm. 2002;245(1–2):37–44.

    Article  CAS  PubMed  Google Scholar 

  35. Tingstad J, Dudzinski J, Lachman L, Shami E. Simplified method for determining chemical stability of drug substances in pharmaceutical suspensions. J J Pharm Sci. 1973;62(8):1361–3.

    Article  CAS  PubMed  Google Scholar 

  36. McAlister E, Kearney MC, Martin EL, Donnelly RF. From the laboratory to the end-user: a primary packaging study for microneedle patches containing amoxicillin sodium. Drug Deliv Transl Res. 2021;11(5):2169–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maulding HV, Zoglio MA, Pigois FE, Wagner MP. Pharmaceutical heterogeneous system. IV. A kinetic approach to the stability screening of solid dosage forms containing aspirin. J Pharm Sci. 1969;58(11):1359–62.

    Article  CAS  PubMed  Google Scholar 

  38. Kesavan JG, Peck GE. Solid-Sate stability of theophylline anhydrous in theophylline anhydrous-polyvinylpyrrolidone physical mixtures. Drug Dev Ind Pharmacy. 1996;22(3):189–99.

    Article  CAS  Google Scholar 

  39. Thakur AB, Morris K, Grosso JA, Himes K, Thottathil JK, Jerzewski RL, et al. Mechanism and kinetics of metal ion-mediated degradation of fosinopril sodium. Pharm Res. 1993;10:800–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kornblum SS, Zoglio MA. Pharmaceutical heterogeneous systems I. Hydrolysis of aspirin in combination with tablet lubricants in an aqueous suspension. J Pharm Sci. 1967;56(12):1569–75.

    Article  CAS  PubMed  Google Scholar 

  41. Ahlneck C, Waltersson JO, Lundgren P. Difference in effect of powdered and granular magnesium stearate on the solid state stability of acetylsalicylic acid. Acta Pharm Technol. 1987;33(1):21–6.

    CAS  Google Scholar 

  42. Byrn SR, Xu W, Newman AW. Chemical reactivity in solid-state pharmaceuticals: formulation implications. Adv Drug Deliv Rev. 2001;48(1):115–36.

    Article  CAS  PubMed  Google Scholar 

  43. Jackson K, Young D, Pant S. Drug-excipient interactions and their affect on absorption. Pharm Sci Technol Today. 2000;3(10):336–45.

    Article  CAS  PubMed  Google Scholar 

  44. Santos I. Drug substance solid-state characterization and stability. In: Mazzo DJ, editor. International stability testing. 1st ed. Boca Raton: CRC Press; 1998. p. 352.

    Google Scholar 

  45. Rácz I (István). Drug Formulation. Chichester: John Wiley; 1989.

  46. Koshy AT, Troup AE, Duvall RN, Conwell RC, Shankle LL. Acetylation of acetaminophen in tablet formulations containing aspirin. J Pharm Sci. 1967;56(9):1117–21.

    Article  CAS  Google Scholar 

  47. Simonelli AP, Dresback DS. Principles of formulation of parenteral dosage forms (Stability considerations). In: Francke DE, Whitney HAK, editors. Perspectives in clinical pharmacy. Hamilton, Illinois: Drug Intelligence Publications; 1972. p. 408–12.

    Google Scholar 

  48. Carstensen JT. Effect of moisture on the stability of solid dosage forms. Drug Dev Ind Pharm. 1988;14(14):1927–69.

    Article  CAS  Google Scholar 

  49. Gu L, Strickley RG, Chi LH, Chowhan ZT. Drug-excipient incompatibility studies of the dipeptide angiotensin-converting enzyme inhibitor, moexipril hydrochloride: dry powder vs wet granulation. Pharm Res. 1990;7(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  50. Serajuddin ATM, Thakur AB, Ghosal RN, Fakes MG, Ranadive SA, Morris KR, et al. Selection of solid dosage form composition through drug-excipient compatibility testing. J Pharm Sci. 1999;88(7):696–704.

    Article  CAS  PubMed  Google Scholar 

  51. Jain S, Shah RP. Drug-excipient compatibility study through a novel vial-in-vial experimental setup: a benchmark study. AAPS PharmSciTech. 2023;24(5):117.

    Article  CAS  PubMed  Google Scholar 

  52. Wyttenbach N, Birringer C, Alsenze J, Kuentz M. Drug-excipient compatibility testing using a high-throughput approach and statistical design. Pham Dev Technol. 2005;10(4):499–505.

    Article  CAS  Google Scholar 

  53. Higuchi WI, Parrott EL, Wurster DE, Higuchi T. Investigation of drug release from solids II. Theoretical and experimental study of influences of bases and buffers on rates of dissolution of acidic solids. J Am Pharm Assoc. 1958;47(5):376–83.

  54. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids II: effect of buffers. J Pharm Sci. 1981;70(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  55. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions. J Pharm Sci. 1981;70(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  56. Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts. II: salicylic acid, theophylline, and benzoic acid. J Pharm Sci. 1985;74(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  57. Farag Badawy SI, Hussain MA. Microenvironmental pH modulation in solid dosage forms. J Pharm Sci. 2007;96(5):948–59.

    Article  Google Scholar 

  58. Kararli TT, Needham TE, Seul CJ, Finnegan PM. Solid-state interaction of magnesium oxide and ibuprofen to form a salt. Pharm Res. 1989;6(9):804–8.

    Article  CAS  PubMed  Google Scholar 

  59. Czaja J, Mielck JB. Solid-state degradation kinetics of nitrazepam in the presence of colloidal silica. Pharm Acta Helv. 1982;57(5–6):144–53.

    CAS  Google Scholar 

  60. Piane MD, Corno M. Can mesoporous silica speed up degradation of benzodiazepines? Hints from quantum mechanical investigations. Materials (Basel). 2022;15(4):1357.

    Article  ADS  Google Scholar 

  61. Johansen H, Moeller N. Solvent deposition of drugs on excipients II: interpretation of dissolution, adsorption and absorption characteristics of drugs. Arch Pharm Chem. 1977;5:33–42.

    Google Scholar 

  62. Tischinger-Wagner H, Endres W, Rupprecht H, Weingart A. Oxidativer abbau von linolsäuremethylester in suspensionen anorganischer hilfsstoffe. Teil 1: autoxidation in Gegenwart von Kieselsäureprodukten und Aluminiumoxid [Oxidative degradation of linoleic acid methyl ester in suspensions of inorganic excipients. 1. Auto-oxidation in the presence of silicic acid products and aluminum oxide]. Pharmazie. 1987;42(5):320–4.

    CAS  PubMed  Google Scholar 

  63. Yamamura T, Ohta T, Taira T, Ogawa Y, Sakai Y, Moribe K, et al. Effects of automated external lubrication on tablet properties and the stability of eprazinone hydrochloride. Int J Pharm. 2009;370(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  64. Stanisz B, Regulska K, Kania J, Garbacki P. Effect of pharmaceutical excipients on the stability of angiotensin-converting enzyme inhibitors in their solid dosage formulations. Drug Dev Ind Pharm. 2013;39(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  65. Riegelman S. The effect of surfactants on drug stability. J Am Pharm Assoc. 1960;49(6):339–43.

    Article  CAS  Google Scholar 

  66. Hincal AA, Long DF, Repta AJ. Cis-platin stability in aqueous parenteral vehicles. J Parenter Drug Assoc. 1979;33(3):107–16.

    CAS  PubMed  Google Scholar 

  67. Nash RA, Haeger BE. Zeta potential in the development of pharmaceutical suspensions. J Pharm Sci. 1966;55(8):829–37.

    Article  CAS  PubMed  Google Scholar 

  68. Gallardo V, Morales ME, Ruiz MA, Delgado AV. An experimental investigation of the stability of ethylcellulose latex: correlation between zeta potential and sedimentation. Eur J Pharm Sci. 2005;26(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  69. Timmer BJJ, Mooibroek TJ. Intermolecular π-π stacking interactions made visible. J Chem Educ. 2021;98(2):540–5.

    Article  CAS  PubMed  Google Scholar 

  70. Huang H, Zhang J, Zhang T, Zhang S. Thermal stability improved by π-π stacking interactions: synthesis, crystal structure and thermal decomposition of sodium nitroformate. J Wuhan Univ Technol-Mat Sci Edit. 2014;39:488–91.

    Article  Google Scholar 

  71. Sao S, Naskar S, Mukhopadhyay N, Das M, Chaudhuri D. Assisted π-stacking: a strong synergy between weak interactions. Chem Comm. 2018;54(86):12186–9.

    Article  CAS  PubMed  Google Scholar 

  72. Li X, Braxton B, Stuto M, Chien D-S, Sun X, Matharu A. Determination of optimal excipient microenvironmental pH to enhance chemical stability of a highly unstable API in formulation development. Annual AAPS meeting; Orlando, FL, Oct 26, 2015.

Download references

Acknowledgements

The authors dedicate this work to late Professor Anthony (Tony) P. Simonelli (Jun 28th 1924-Jul 14th 2023) whose profound influence and guidance provided by classroom instructions and publications served as the foundation for this 3-day rapid testing methodology. The authors acknowledge Dr. Keith Flood, Dr. Thomas Eskay for assistance with design of experiments and material characterization, and Dr. Anup Ray for helpful discussions on the stabilization mechanism of NVS-1 in presence of salts. The authors also appreciate Dr. Mahendra Patel for the helpful insights and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors have approved the contents of this manuscript and are accountable for the accuracy of the work presented.

YC and ASM: generation and curation of experimental data, its interpretation, drafting of the manuscript, and final approval of the publication.

SSD: writing/revising of content, data interpretation, editing and final approval of the version to be published.

Corresponding author

Correspondence to Sundeep S. Dhareshwar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matharu, A.S., Dhareshwar, S.S. & Cao, Y.(. A Rapid 3-Day Excipient Screening Methodology and its Application in Identifying Chemical Stabilizers for Solid Formulations with Mixed Mechanisms of Degradation. AAPS PharmSciTech 25, 12 (2024). https://doi.org/10.1208/s12249-023-02730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02730-5

Keywords

Navigation