Skip to main content
Log in

Thermal stability improved by π-π stacking interactions: Synthesis, crystal structure and thermal decomposition of sodium nitroformate

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

An energetic salt, sodium nitroformate (NaNF), was synthesized and characterized by elemental analysis, IR and UV spectra, and its crystal structure was first determined by single crystal X-ray diffraction. The structure exhibits two types of π-π stacking interactions between the nitroformate anions, i e, the parallel-displaced and T-shaped configurations. Furthermore, the thermal decomposition mechanism was investigated by DSC, TG-DTG and FTIR techniques. The kinetic parameters of the thermal decomposition were also calculated by using Kissinger’s and Ozawa-Doyle’s methods. The results show that NaNF has a good thermal stability, which is attributed to the π-π stacking interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Vallee, P Damman, M Dosiere, et al. Nonlinear Optical Properties and Crystalline Orientation of 2-Methyl-4-nitroaniline Layers Grown on Nanostructured Poly(tetrafluoroethylene) Substrates[J]. J. Am. Chem. Soc., 2000, 122(28): 6 701–6 709

    Article  Google Scholar 

  2. S Nibedita, M L Paul. Hydrogen-bond-assisted, Crossed Dipole π-Stacking in 1,4-Bis(phenylethynyl)benzene[J]. Cryst. Growth Des., 2006, 6(6): 1 253–1 255

    Article  Google Scholar 

  3. G R Hutchison, M A Ratner, T J Marks. Intermolecular Charge Transfer between Heterocyclic Oligomers: Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors[J]. J. Am. Chem. Soc., 2005, 127(48): 16 866–16 881

    Article  Google Scholar 

  4. X Yang, L Wang, C Wang, et al. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors: Oligothiophenes[J]. Chem. Mater., 2008, 20(9): 3 205–3 211

    Article  Google Scholar 

  5. F M Raymo, K N Houk, J F Stoddart. Origins of Selectivity in Molecular and Supramolecular Entities: Solvent and Electrostatic Control of the Translational Isomerism in [2]Catenanes[J]. J. Org. Chem., 1998, 63(19): 6 523–6 528

    Article  Google Scholar 

  6. E C Lee, D Kim, P Jurecka, et al. Understanding of Assembly Phenomena by Aromatic-aromatic Interactions: Benzene Dimer and the Substituted Systems[J]. J. Phys. Chem. A, 2007, 111(18): 3 446–3 457

    Article  Google Scholar 

  7. C Zhang, X Wang, H Huang. π-Stacked Interactions in Explosive Crystals: Buffers against External Mechanical Stimuli[J]. J. Am. Chem. Soc., 2008, 130(26): 8 359–8 365

    Article  Google Scholar 

  8. B Song, H Wei, Z Wang, et al. Supramolecular Nanoribers by Self-organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and π-π Stacking Interactions[J]. Adv. Mater., 2007, 19(3): 416–420

    Article  Google Scholar 

  9. J R Lovett, N J Edison. Nitroform Salt of Certain Metals[P]. US 3562309, 1971

    Google Scholar 

  10. J Zhang, T Zhang, J Zhang, et al. Synthesis, Crystal Structure and Thermal Decomposition Character of [Zn(CHZ)3][C(NO2)3]2·(H2O)2 (CHZ = Carbohydrazide)[J]. Struct. Chem., 2008, 19(2): 321–328

    Article  Google Scholar 

  11. J Zhang, T Zhang, L Yang, et al. Synthesis, Thermal Decomposition, and Properties of [Mn(CHZ)3][C(NO2)3]2[J]. Propellants Explos. Pyrotech., 2009, 34(1): 24–31

    Article  Google Scholar 

  12. L Yang, J Zhang, T Zhang, et al. Crystal Structures, Thermal Decompositions and Sensitivity Properties of [Cu(ethylenediamine)2(n itroformate)2] and [Cd(ethylenediamine)3](nitroformate)2[J]. J. Hazard. Mater., 2009, 164(2–3): 962–967

    Article  Google Scholar 

  13. G M Sheldrick. SADABS: Program for Empirical Absorption Corrector Data[CP]. University of Göttingen, Germany, 1996

    Google Scholar 

  14. G M Sheldrick. SHELXTL-97: Structure Determination Software Programs[CP]. Bruker Analytical of X-ray System, Inc., Madison, WI, USA, 1997

    Google Scholar 

  15. M Göbel, T M Klapötke, P Mayer, et al. Crystal Structures of the Potassium and Silver Salts of Nitroform[J]. Z. Anorg. Allg. Chem., 2006, 632(6): 1 043–1 050

    Article  Google Scholar 

  16. H Huang, S Zhang, T Zhang, et al. Comparative Theoretical Study of the Geometric and Electronic Structures of Potassium and Silver Salts of Nitroform[J]. Comput. Theor. Chem., 2013, 1 004(1–3): 1–4

    Article  Google Scholar 

  17. S Xia, S Bobev. Cation-anion Interactions as Structure Directing Factors: Structure and Bonding of Ca2CdSb2 and Yb2CdSb2[J]. J. Am. Chem. Soc., 2007, 129(13): 4 049–4 057

    Article  Google Scholar 

  18. R Kumar, V Bhakuni. Comparative Analysis of Malate Synthase G from Mycobacterium Tuberculosis and E. Coli: Role of Ionic Interaction in Modulation of Structural and Functional Properties[J]. Int. J. Biol. Macromol., 2011, 49(5): 917–922

    Article  Google Scholar 

  19. T Endo, T Morita, K Nishikawa. Crystal Polymorphism of a Room-temperature Ionic Liquid, 1,3-Dimethylimidazolium Hexafluorophosphate: Calorimetric and Structural Studies of Two Crystal Phases Having Melting Points of ∼ 50 K Difference[J]. Chem. Phys. Lett., 2011, 517(4–6): 162–165

    Article  Google Scholar 

  20. H E Kissinger. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29(11): 1 702–1 706

    Article  Google Scholar 

  21. T Ozawa. A New Method of Analyzing Thermogravimetric Data[J]. Bull. Chem. Soc. Jpn., 1965, 38(11): 1 881–1 886

    Article  Google Scholar 

  22. C D Doyle. Kinetic Analysis of Thermogravimetric Data[J]. J. Appl. Polym. Sci., 1961, 5(15): 285–292

    Article  Google Scholar 

  23. R Z Hu, A Q Yang, Y J Ling. The Determination of the Most Probable Mechanism Function and 3 Kinetic-parameters of Exothermic Decomposition Reaction of Energetic Materials by a Single Nonisothermal DSC Curve[J]. Thermochim. Acta, 1988, 123(1): 135–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tonglai Zhang  (张同来) or Shengtao Zhang  (张胜涛).

Additional information

Funded by the National “973” Project, the National Natural Science Foundation of China (No.20471008), the Natural Science Foundation of Chongqing (No.cstc2011jjA50013), and the Chongqing Municipal Commission of Education (No.KJ111310)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhang, J., Zhang, T. et al. Thermal stability improved by π-π stacking interactions: Synthesis, crystal structure and thermal decomposition of sodium nitroformate. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 488–491 (2014). https://doi.org/10.1007/s11595-014-0945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0945-0

Key words

Navigation