Skip to main content

Advertisement

Log in

HSPiP and QbD Program–Based Analytical Method Development and Validation to Quantify Ketoconazole in Dermatokinetic Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Ketoconazole (KTZ) is the most potential azole anti-mycotic drug. The quantification of KTZ from various layers of the skin after topical application of lipidic nanocarriers is critical. We addressed a sensitive, specific, simple, rapid, reproducible, and economic analytical method to quantify KTZ from the treated skin homogenate using the Hansen solubility parameter (HSP, HSPiP software)–based modeling and experimental design. The software provided various HSP values for KTZ and solvents to compose the mobile phase. The Taguchi model identified the significant sets of factors to develop a robust bioanalytical method with reduced variability. In the optimization, acetonitrile (ACN) concentration (X1 as A) and the pH of mobile phase (X2 as B) were two factors against two responses (Y1: peak area and Y2: retention time). The HPLC (high-performance liquid chromatography) method validation was carried out based on US-FDA guidelines for the developed KTZ formulations (suspension, solid nanoparticles, and commercial product) extracted from the treated rat skin. The experimental solubility of KTZ was found to be maximum in the two solvents (ACN and ethyl acetate), based on HSP values. Surface response methodology (SRM) identified remarkable impact of ACN concentration and the mobile phase pH on the peak area and retention time. Analytical limits (0.17 and 0.50 µg/mL) were established for KTZ-SLNs (extracted from the skin). The method was implemented with high reproducibility, accuracy, and selectivity to quantify KTZ from the treated rat skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. James CA, Breda M, Barattè S, Casati M, Grassi S, Pellegatta B, Sarati S, Frigerio E. Analysis of drugs and metabolites in tissues and other solid matrices. Chromatographia. 2004;59:S149–56.

    CAS  Google Scholar 

  2. Kedor-Hackmann ÉRM, Nery MMF, Santoro MIRM. Determination of ketoconazole in pharmaceutical preparations by ultraviolet spectrophotometry and high performance liquid chromatography. Anal Lett. 1994;27:363–76.

    Article  CAS  Google Scholar 

  3. Kumar G, Augustine P, John S, Radecki J, Radecka H. Fabrication of potentiometric sensors for the selective determination of ketoconazole. Anal Lett. 2008;41:1144–57.

    Article  Google Scholar 

  4. Jalali F, Afshoon A. Spectrofluorimetric study and detection of ketoconazole in the presence of β-cyclodextrin. J Fluoresc. 2008;18:219–25.

    Article  CAS  PubMed  Google Scholar 

  5. Abdel-Moety EM, Khattab FI, Kelani KM, AbouAl-Alamein AM. Chromatographic determination of clotrimazole, ketoconazole and fluconazole in pharmaceutical formulations. Il Farmaco. 2002;57:931–8.

    Article  CAS  PubMed  Google Scholar 

  6. Staub I, Bergold A. Determination of ketoconazole in shampoo by high performance liquid chromatography. Acta Farm Bonaerense. 2004;23:387–90.

    CAS  Google Scholar 

  7. Bajad S, Johri RK, Singh K, Singh J, Bedi KL. Simple high-performance liquid chromatography method for the simultaneous determination of ketoconazole and piperine in rat plasma and hepatocyte culture. J Chromatogr A. 2002;949:43–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ng TKC, Chan RCY, Adeyemi-Doro FAB, Cheung SW, Cheng AFB. Rapid high performance liquid chromatographic assay for antifungal agents in human sera. J Antimicrob Chemother. 1996;37:465–72.

    Article  CAS  PubMed  Google Scholar 

  9. Turner CA, Turner A, Warnock DW. High performance liquid chromatographic determination of ketoconazole in human serum. J Antimicrob Chemother. 1986;18:757–63.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Wang L, Gao C, Zhang L, Xia H. Ocular pharmacokinetics of topically-applied ketoconazole solution containing hydroxypropyl beta-cyclodextrin to rabbits. J Ocul Pharmacol Ther. 2008;24:501–6.

    Article  CAS  PubMed  Google Scholar 

  11. Chik Z, Tucker A, Shiel J, Collier D, Perrett D, Lee T, Johnston A. Comparative pharmacokinetic assessments of topical drugs: evaluation by dermatopharmacokinetics, microdialysis, and systemic measurement. J Investig Dermatol. 2010;130:2828–30.

    Article  CAS  PubMed  Google Scholar 

  12. Wan T, Xu T, Pan J, Qin M, Pan W, Zhang G, Wu Z, Wu C, Xu Y. Microemulsion based gel for topical dermal delivery of pseudolaric acid B: in vitro and in vivo evaluation. Int J Pharm. 2015;493:111–20.

    Article  CAS  PubMed  Google Scholar 

  13. Lambourne R, Strivens TA. Paints and surface coatings: theory and practice. 2nd Edition, 1999: 166-183.

  14. Hansen CM. Hansen solubility parameters: a user’s handbook, Second Edition (2nd ed.). CRC Press; 2007. p. 6–8. https://doi.org/10.1201/9781420006834.

  15. Abbott S. An integrated approach to optimizing skin delivery of cosmetic and pharmaceutical actives. Int J Cosmet Sci. 2012;34:217–22.

    Article  CAS  PubMed  Google Scholar 

  16. Ribar D, Rijavec T, Cigić IK. An exploration into the use of Hansen solubility parameters for modelling reversed-phase chromatographic separations. J Anal Sci Technol. 2022;13:12. https://doi.org/10.1186/s40543-022-00322-9.

    Article  CAS  Google Scholar 

  17. Ramzan M, Kaur G, Trehan S, Agrewala JN, Michniak-Kohn BB, Hussain A, Mahdi WA, Gulati JS, Kaur IP. Mechanistic evaluations of ketoconazole lipidic nanoparticles for improved efficacy, enhanced topical penetration, cellular uptake (L929 and J774A.1), and safety assessment: In vitro and in vivo studies. J Drug Deliv Sci Technol. 2021;65:102743.

    Article  CAS  Google Scholar 

  18. Ramzan M, Gourion-Arsiquaud S, Hussain A, Gulati JS, Zhang Q, Trehan S, Puri V, Michniak-Kohn B, Kaur IP. In vitro release, ex vivo penetration, and in vivo dermatokinetics of ketoconazole-loaded solid lipid nanoparticles for topical delivery. Drug Deliv Transl Res. 2022;12(7):1659–83.

    Article  CAS  PubMed  Google Scholar 

  19. Tang PH. Determination of posaconazole in plasma/serum by high-performance liquid chromatography with fluorescence detection. Separations. 2017;4:1–11.

    Article  CAS  Google Scholar 

  20. Al-meshal MA. Determination of ketoconazole in plasma and dosage forms by high-performance liquid chromatography and a microbiological method. Anal Lett. 1989;22:2249–63.

    Article  CAS  Google Scholar 

  21. Chen Y, Felder L, Jiang X, Weng N. Determination of ketoconazole in human plasma by high-performance liquid chromatography - tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;774:67–78.

    Article  CAS  PubMed  Google Scholar 

  22. Patel KY, Dedania ZR, Dedania RR, Patel U. QbD approach to HPLC method development and validation of ceftriaxone sodium. Futur J Pharm Sci. 2021;7:1–10.

    Article  Google Scholar 

  23. Saini S, Sharma T, Patel A, Kaur R, Tripathi S, Katare O, Singh B. QbD-steered development and validation of an RP-HPLC method for quantification of ferulic acid: rational application of chemometric tools. J Chromatogr B. 2020;1155:122300.

    Article  CAS  Google Scholar 

  24. FDA, 2018. Bioanalytical method validation. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed 25 Apr 2023.

  25. ICH, 2005. Q2 (R1) Validation of analytical procedures: text and methodology. https://www.ema.europa.eu/en/ich-q2-r1-validation-analytical-procedures-text-methodology. Accessed 25 Apr 2023.

  26. Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm. 2013;441:202–12.

    Article  CAS  PubMed  Google Scholar 

  27. Alqahtani SM, Altharawi A, Altamimi MA, Alossaimi MA, Mahdi WA, Ramzan M, Hussain A. Method development, stability, and pharmacokinetic studies of acyclovir-loaded topical formulation in spiked rat plasma. Processes. 2022;10:2079.

    Article  CAS  Google Scholar 

  28. Kaur R, Saini S, Patel A, Sharma T, Kaur R, Prakash O, Singh B. Developing a validated HPLC method for quantification of ceftazidime employing analytical Quality by Design and Monte Carlo simulations. J AOAC Int. 2021;104(3):620–32.

    Article  PubMed  Google Scholar 

  29. Saini K, Modgill N, Singh KK, Kakkar V. Tetrahydrocurcumin lipid nanoparticle based gel promotes penetration into deeper skin layers and alleviates atopic dermatitis in 2, 4-dinitrochlorobenzene (DNCB) mouse model. Nanomaterials. 2022;12:636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kakkar S, Karuppayil SM, Raut JS, Giansanti F, Papucci L, Schiavone N, Kaur IP. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int J Pharm. 2015;495:276–89.

    Article  CAS  PubMed  Google Scholar 

  31. Suraj, Agarwal P, Ansari SH, Karmarkar RR. Enhancement of the dissolution rate of ketoconazole through a novel complexation with humic acid extracted from Shilajit. Asian J Chem. 2008;20:380–8.

    Google Scholar 

  32. Stringham RW, Lynam KG, Lord BS. Memory effect of diethylamine mobile phase additive on chiral separations on polysaccharide stationary phases. Chirality. 2004;16(8):493–8.

    Article  CAS  PubMed  Google Scholar 

  33. Singh B, Kaur A, Dhiman S, Garg B, Khurana RK, Beg S. QbD-enabled development of novel stimuli-responsive gastroretentive systems of acyclovir for improved patient compliance and biopharmaceutical performance. AAPS PharmSciTech. 2015;17:454–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meyer C, Seiler P, Bies C, Cianciulli C, Wätzig H, Meyer VR. Minimum required signal-to-noise ratio for optimal precision in HPLC and CE. Electrophoresis. 2012;33(11):1509–16. https://doi.org/10.1002/elps.201100694.

    Article  CAS  PubMed  Google Scholar 

  35. Ameen M. Epidemiology of superficial fungal infections. Clin Dermatol. 2010;28:197–201.

    Article  PubMed  Google Scholar 

  36. Aljaeid BM, Hosny KM. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int J Nanomedicine. 2016;11:441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deschenes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci. 2020;277:102106.

    Article  CAS  PubMed  Google Scholar 

  38. Shahid M, Hussain A, Khan AA, Alanazi AM, Alaofi AL, Alam M, Ramzan M. Antifungal cationic nanoemulsion ferrying miconazole nitrate with synergism to control fungal infections: in vitro, ex vivo, and in vivo evaluations. ACS Omega. 2022;7:13343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, “Ministry of Education,” in Saudi Arabia, for funding this research (IFKSUOR3-129-3).

Author information

Authors and Affiliations

Authors

Contributions

AH: conceptualization, methodology, and drafting, MR: data curation, software, and analysis, MAA: visualization, review, and editing, TK: editing and validation. All authors reviewed and agreed to publish the article.

Corresponding authors

Correspondence to Afzal Hussain or Mohhammad Ramzan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Ramzan, M., Altamimi, M.A. et al. HSPiP and QbD Program–Based Analytical Method Development and Validation to Quantify Ketoconazole in Dermatokinetic Study. AAPS PharmSciTech 24, 231 (2023). https://doi.org/10.1208/s12249-023-02675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02675-9

Keywords

Navigation