Skip to main content
Log in

Nanoparticle-Based Approaches for Treatment of Hematological Malignancies: a Comprehensive Review

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Blood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy. In addition, immunotherapies and targeted therapies can be prohibitively expensive. Over the past two decades, scientists have devised a few nanoparticle-based drug delivery systems aimed at overcoming this challenge. These therapeutic strategies are engineered to augment the cellular uptake, pharmacokinetics, and effectiveness of anticancer drugs. However, there are still numerous types of nanoparticles that could potentially improve the efficacy of blood cancer treatment, while also reducing treatment costs and mitigating drug-related side effects. To the best of our knowledge, there has been limited reviews published on the use of nano-based drug delivery systems for the treatment of hematological malignancies. Therefore, we have made a concerted effort to provide a comprehensive review that draws upon recent literature and patents, with a focus on the most promising results regarding the use of nanoparticle-based approaches for the treatment of hematological malignancies. All these crucial points covered under a common title would significantly help researchers and scientists working in the area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Blood Cancers > Fact Sheets > Yale Medicine [Internet]. [cited 2023 Apr 14]. Available from: https://www.yalemedicine.org/conditions/blood-cancers.

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin [Internet]. 2021 [cited 2023 Mar 24];71:209–49. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.3322/caac.21660.

  3. Button E, Chan RJ, Chambers S, Butler J, Yates P. A systematic review of prognostic factors at the end of life for people with a hematological malignancy. BMC Cancer. 2017;17:213.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haloupek N. The landscape of blood cancer research today—and where the field is headed. Blood Cancer Discov. 2020;1:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lightfoot T, Smith A, Roman E. Leukemia. International Encyclopedia of Public Health. 2023;410–8.

  6. Rezaee A, Schöder H, Raderer M, Langsteger W, Beheshti M. Lymphoma. PET/CT in cancer: an interdisciplinary approach to individualized imaging [Internet]. 2023 [cited 2023 Apr 14];149–68. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560826/.

  7. Key statistics for non-Hodgkin lymphoma [Internet]. [cited 2023 Apr 14]. Available from: https://www.cancer.org/cancer/non-hodgkin-lymphoma/about/key-statistics.html.

  8. Key Statistics for Multiple Myeloma [Internet]. [cited 2023 Apr 14]. Available from: https://www.cancer.org/cancer/multiple-myeloma/about/key-statistics.html.

  9. Ashique S, Kumar S, Hussain A, Mishra N, Garg A, Gowda BHJ, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J Health Popul Nutr [Internet]. 2023 [cited 2023 Aug 8];42:74. Available from: https://jhpn.biomedcentral.com/articles/https://doi.org/10.1186/s41043-023-00423-0.

  10. Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience [Internet]. 2012 [cited 2023 Apr 14];6. Available from: /pmc/articles/PMC4024849/.

  11. Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Molecular Cancer 2023 22:1 [Internet]. 2023 [cited 2023 Apr 14];22:1–50. Available from: https://link.springer.com/articles/https://doi.org/10.1186/s12943-022-01708-4.

  12. Wang J, Sheng L, Lai Y, Xu Z. An overview on therapeutic efficacy and challenges of nanoparticles in blood cancer therapy. J King Saud Univ Sci. 2022;34:102182.

    Article  Google Scholar 

  13. Narayana S, Ahmed MG, Gowda BHJ, Shetty PK, Nasrine A, Thriveni M, et al. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: a comprehensive review. Future Journal of Pharmaceutical Sciences 2021 7:1 [Internet]. 2021 [cited 2023 Apr 15];7:1–21. Available from: https://fjps.springeropen.com/articles/https://doi.org/10.1186/s43094-021-00331-2.

  14. Damiri F, Gowda BHJ, Andra S, Balu S, Rojekar S, Berrada M. Chitosan nanocomposites as scaffolds for bone tissue regeneration. 2023 [cited 2023 Apr 15];377–94. Available from: https://link.springer.com/chapter/https://doi.org/10.1007/978-981-19-9646-7_16.

  15. Khan MS, Gowda BHJ, Nasir N, Wahab S, Pichika MR, Sahebkar A, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm. 2023;643:123276.

    Article  CAS  PubMed  Google Scholar 

  16. Ahamed J, Jaswanth Gowda BH, Almalki WH, Gupta N, Sahebkar A, Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur Polym J. 2023;193:112111.

    Article  CAS  Google Scholar 

  17. Paul K, Jaswanth Gowda BH, Damiri F, Hemalatha YR, Chandan RS, Berrada M. Nanophytomedicine and their applications : a brief overview 1. Polymer Nanocomposites [Internet]. 2023 [cited 2023 Jul 23];83–94. Available from: https://www.taylorfrancis.com/chapters/edit/https://doi.org/10.1201/9781003343912-6/nanophytomedicine-applications-karthika-paul-jaswanth-gowda-fouad-damiri-hemalatha-chandan-mohammed-berrada.

  18. Sanjana A, Ahmed MG, Gowda BHJ, Surya S. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo. 101080/0193269120222139716 [Internet]. 2022 [cited 2023 Aug 8]; Available from: https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/01932691.2022.2139716.

  19. Gowda BHJ, Ahmed MG, Chinnam S, Paul K, Ashrafuzzaman M, Chavali M, et al. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol. 2022;71:103305.

    Article  CAS  Google Scholar 

  20. Gowda BHJ, Mohanto S, Singh A, Bhunia A, Abdelgawad MA, Ghosh S, et al. Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art. Mater Today Chem. 2023;27:101319.

    Article  CAS  Google Scholar 

  21. Sanjana A, Ahmed MG, Gowda JBH. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater Today Proc. 2022;50:197–205.

    Article  CAS  Google Scholar 

  22. Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, et al. Novel drug delivery systems as an emerging platform for stomach cancer therapy. Pharmaceutics 2022, Vol 14, Page 1576 [Internet]. 2022 [cited 2023 Apr 14];14:1576. Available from: https://www.mdpi.com/1999-4923/14/8/1576/htm.

  23. Dubey SK, Parab S, Achalla VPK, Narwaria A, Sharma S, Jaswanth Gowda BH, et al. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts. 101080/0920506320222065408 [Internet]. 2022 [cited 2023 Apr 14];33:1531–54. Available from: https://www.tandfonline.com/doi/abs/https://doi.org/10.1080/09205063.2022.2065408.

  24. Damiri F, Rojekar S, Bachra Y, Varma RS, Andra S, Balu S, et al. Polysaccharide-based nanogels for biomedical applications: a comprehensive review. J Drug Deliv Sci Technol. 2023;84:104447.

    Article  CAS  Google Scholar 

  25. Nasrine A, Gulzar Ahmed M, Narayana S. Silk fibroin-anastrozole loaded prolonged-release biodegradable nanomedicine: a promising drug delivery system for breast cancer therapy. Mater Today Proc. 2022;68:56–65.

    Article  CAS  Google Scholar 

  26. Narayana S, Gulzar Ahmed M, Nasrine A. Effect of nano-encapsulation using human serum albumin on anti-angiogenesis activity of bevacizumab to target corneal neovascularization: Development, optimization and in vitro assessment. Mater Today Proc. 2022;68:93–104.

    Article  CAS  Google Scholar 

  27. Allegra A, Di Gioacchino M, Tonacci A, Petrarca C, Gangemi S. Nanomedicine for immunotherapy targeting hematological malignancies: current approaches and perspective. Nanomaterials (Basel) [Internet]. 2021 [cited 2023 Apr 14];11. Available from: https://pubmed.ncbi.nlm.nih.gov/34835555/.

  28. Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release [Internet]. 2021 [cited 2023 Apr 14];337:571–88. Available from: https://pubmed.ncbi.nlm.nih.gov/34364920/.

  29. Current Nanotechnology Treatments - NCI [Internet]. [cited 2023 Apr 14]. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments.

  30. Huang X, Mahmudul HM, Li Z, Deng X, Su X, Xiao Z, et al. Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies. Front Biosci (Landmark Ed) [Internet]. 2022 [cited 2023 Apr 14];27. Available from: https://pubmed.ncbi.nlm.nih.gov/35226983/.

  31. Thakur C, Nayak P, Mishra V, Sharma M, Saraogi GK. Treating blood cancer with nanotechnology: a paradigm shift. Nano Drug Delivery Strategies for the Treatment of Cancers. 2021;225–43.

  32. Powsner EH, Harris JC, Day ES. Biomimetic nanoparticles for the treatment of hematologic malignancies. Adv Nanobiomed Res [Internet]. 2021 [cited 2023 Apr 14];1:2000047. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/anbr.202000047.

  33. Acute lymphoblastic leukaemia [Internet]. [cited 2023 Apr 14]. Available from: https://www.thelancet.com/clinical/diseases/acute-lymphoblastic-leukaemia.

  34. Chronic myeloid leukaemia [Internet]. [cited 2023 Apr 14]. Available from: https://www.thelancet.com/clinical/diseases/chronic-myeloid-leukaemia-cml.

  35. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. The Lancet [Internet]. 2017 [cited 2023 Apr 14];390:298–310. Available from: http://www.thelancet.com/article/S0140673616324072/fulltext.

  36. Hodgkin’s Lymphoma [Internet]. [cited 2023 Apr 14]. Available from: https://www.thelancet.com/clinical/diseases/hodgkins-lymphoma.

  37. van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. The Lancet [Internet]. 2021 [cited 2023 Apr 14];397:410–27. Available from: http://www.thelancet.com/article/S0140673621001355/fulltext.

  38. Zhao Z, Hu Y, Li J, Zhou Y, Zhang B, Deng S. Applications of PET in diagnosis and prognosis of leukemia. Technol Cancer Res Treat [Internet]. 2020 [cited 2023 Apr 14];19. Available from: /pmc/articles/PMC7476341/.

  39. Lewis WD, Lilly S, Jones KL. Lymphoma: diagnosis and treatment. Am Fam Physician [Internet]. 2020 [cited 2023 Apr 14];101:34–41. Available from: https://www.aafp.org/pubs/afp/issues/2020/0101/p34.html.

  40. GADDEY HL, RIEGEL AM. Unexplained Lymphadenopathy: Evaluation and Differential Diagnosis. Am Fam Physician [Internet]. 2016 [cited 2023 Apr 14];94:896–903. Available from: https://www.aafp.org/pubs/afp/issues/2016/1201/p896.html.

  41. Ansell SM. Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc [Internet]. 2015 [cited 2023 Apr 14];90:1574–83. Available from: http://www.mayoclinicproceedings.org/article/S0025619615005509/fulltext.

  42. WHO Classification of tumours of haematopoietic and lymphoid tissues—IARC [Internet]. [cited 2023 Apr 14]. Available from: https://www.iarc.who.int/news-events/who-classification-of-tumours-of-haematopoietic-and-lymphoid-tissues-2/.

  43. Wang HW, Balakrishna JP, Pittaluga S, Jaffe ES. Diagnosis of Hodgkin lymphoma in the modern era. Br J Haematol [Internet]. 2019 [cited 2023 Apr 14];184:45–59. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/bjh.15614.

  44. Rajkumar SV. Multiple myeloma: Every year a new standard? Hematol Oncol [Internet]. 2019 [cited 2023 Apr 14];37 Suppl 1:62–5. Available from: https://pubmed.ncbi.nlm.nih.gov/31187526/.

  45. MICHELS TC, PETERSEN KE. Multiple myeloma: diagnosis and treatment. Am Fam Physician [Internet]. 2017 [cited 2023 Apr 14];95:373-383A. Available from: https://www.aafp.org/pubs/afp/issues/2017/0315/p373.html.

  46. Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A, Shinomiya K, et al. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nature Communications 2012 3:1 [Internet]. 2012 [cited 2023 Apr 14];3:1–12. Available from: https://www.nature.com/articles/ncomms1786.

  47. Bakst RL, Dabaja BS, Specht LK, Yahalom J. Use of radiation in extramedullary leukemia/chloroma: guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys [Internet]. 2018 [cited 2023 Apr 14];102:314–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30191865/.

  48. Shimada T, Saito T, Okadome M, Shimamoto K, Ariyoshi K, Eto T, et al. Secondary leukemia after chemotherapy and/or radiotherapy for gynecologic neoplasia. Int J Gynecol Cancer [Internet]. 2014 [cited 2023 Apr 14];24:178–83. Available from: https://pubmed.ncbi.nlm.nih.gov/24407580/.

  49. Low-Dose Radiation and Leukemia. 101056/NEJM198010023031412 [Internet]. 2009 [cited 2023 Apr 14];303:814–6. Available from: https://www.nejm.org/doi/full/https://doi.org/10.1056/NEJM198010023031412.

  50. Bodet-Milin C, Kraeber-Bodéré F, Eugène T, Guérard F, Gaschet J, Bailly C, et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med [Internet]. 2016 [cited 2023 Apr 14];46:135–46. Available from: https://pubmed.ncbi.nlm.nih.gov/26897718/.

  51. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, et al. Anthracycline dose intensification in acute myeloid leukemia. 101056/NEJMoa0904544 [Internet]. 2009 [cited 2023 Apr 14];361:1249–59. Available from: https://www.nejm.org/doi/full/https://doi.org/10.1056/NEJMoa0904544.

  52. Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie JN, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet [Internet]. 2012 [cited 2023 Apr 14];379:1508–16. Available from: https://pubmed.ncbi.nlm.nih.gov/22482940/.

  53. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med [Internet]. 2017 [cited 2023 Apr 14];377:454–64. Available from: https://pubmed.ncbi.nlm.nih.gov/28644114/.

  54. Rubnitz JE, Gibson B, Smith FO. Acute Myeloid Leukemia. Hematol Oncol Clin North Am. 2010;24:35–63.

    Article  PubMed  Google Scholar 

  55. Devita VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med [Internet]. 1970 [cited 2023 Apr 14];73:881–95. Available from: https://pubmed.ncbi.nlm.nih.gov/5525541/.

  56. Bonadonna G, Zucali R, Monfardini S, Lena M DE, Uslenchi C. Combination chemotherapy of Hodgkin’s disease with Adriamycin, Bleomycin, Vinblastine, and Imidazole Carboxamide versus MOPP. [cited 2023 Apr 14]; Available from: https://acsjournals.onlinelibrary.wiley.com/doi/https://doi.org/10.1002/1097-0142.

  57. Canellos GP, Anderson JR, Propert KJ, Nissen N, Cooper MR, Henderson ES, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. 101056/NEJM199211193272102 [Internet]. 2010 [cited 2023 Apr 14];327:1478–84. Available from: https://www.nejm.org/doi/full/https://doi.org/10.1056/nejm199211193272102.

  58. Canellos GP, Niedzwiecki D. Long-term follow-up of Hodgkin’s disease trial. N Engl J Med [Internet]. 2002 [cited 2023 Apr 14];346:1417–8. Available from: https://pubmed.ncbi.nlm.nih.gov/11986425/.

  59. Shanbhag S, Ambinder RF. Hodgkin lymphoma: a review and update on recent progress. CA Cancer J Clin [Internet]. 2018 [cited 2023 Apr 14];68:116–32. Available from: https://pubmed.ncbi.nlm.nih.gov/29194581/.

  60. Attal M, Palumbo A, Holstein SA, Lauwers-Cances V, Petrucci MT, Richardson PG, et al. Lenalidomide (LEN) maintenance (MNTC) after high-dose melphalan and autologous stem cell transplant (ASCT) in multiple myeloma (MM): A meta-analysis (MA) of overall survival (OS). 101200/JCO20163415_suppl8001. 2016;34:8001–8001.

  61. Klener P, Otahal P, Lateckova L, Klener P. Immunotherapy approaches in cancer treatment. Curr Pharm Biotechnol [Internet]. 2015 [cited 2023 Apr 14];16:771–81. Available from: https://pubmed.ncbi.nlm.nih.gov/26087990/.

  62. Ke X, Shen L. Molecular targeted therapy of cancer: the progress and future prospect. Front Laboratory Med. 2017;1:69–75.

    Article  Google Scholar 

  63. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev [Internet]. 2019 [cited 2023 Apr 14];34:45–55. Available from: https://pubmed.ncbi.nlm.nih.gov/30528964/.

  64. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: clinical transformation and future prospects. Cancer Lett [Internet]. 2020 [cited 2023 Apr 14];472:175–80. Available from: https://pubmed.ncbi.nlm.nih.gov/31790761/.

  65. Aldoss I, Bargou RC, Nagorsen D, Friberg GR, Baeuerle PA, Forman SJ. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors. Leukemia [Internet]. 2017 [cited 2023 Apr 14];31:777–87. Available from: https://pubmed.ncbi.nlm.nih.gov/28028314/.

  66. Springuel L, Lonez C, Alexandre B, Van Cutsem E, Machiels JPH, Van Den Eynde M, et al. Chimeric antigen receptor-T cells for targeting solid tumors: current challenges and existing strategies. BioDrugs [Internet]. 2019 [cited 2023 Apr 14];33:515–37. Available from: https://pubmed.ncbi.nlm.nih.gov/31363930/.

  67. Grigor EJM, Fergusson D, Kekre N, Montroy J, Atkins H, Seftel MD, et al. Risks and benefits of chimeric antigen receptor T-Cell (CAR-T) therapy in cancer: a systematic review and meta-analysis. Transfus Med Rev [Internet]. 2019 [cited 2023 Apr 14];33:98–110. Available from: https://pubmed.ncbi.nlm.nih.gov/30948292/.

  68. Rust BJ, Kiem HP, Uldrick TS. CAR T-cell therapy for cancer and HIV through novel approaches to HIV-associated haematological malignancies. Lancet Haematol [Internet]. 2020 [cited 2023 Apr 14];7:e690–6. Available from: https://pubmed.ncbi.nlm.nih.gov/32791043/.

  69. Hay KA. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol [Internet]. 2018 [cited 2023 Apr 14];183:364–74. Available from: https://pubmed.ncbi.nlm.nih.gov/30407609/.

  70. Gowda BHJ, Ahmed MG, Alshehri SA, Wahab S, Vora LK, Singh Thakur RR, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res. 2023;237:116894.

    Article  CAS  PubMed  Google Scholar 

  71. Bajpai S, Tiwary SK, Sonker M, Joshi A, Gupta V, Kumar Y, et al. Recent advances in nanoparticle-based cancer treatment: a review. ACS Appl Nano Mater [Internet]. 2021 [cited 2023 Sep 7];4:6441–70. Available from: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/acsanm.1c00779.

  72. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today [Internet]. 2018 [cited 2023 Sep 7];23:944. Available from: /pmc/articles/PMC7108348/.

  74. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: Journey Inside the Cell. Chem Soc Rev [Internet]. 2017 [cited 2023 Sep 7];46:4218. Available from: /pmc/articles/PMC5593313/.

  75. Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med [Internet]. 2017 [cited 2023 Sep 7];21:1668. Available from: /pmc/articles/PMC5571529/.

  76. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci. 2016;11:337–48.

    Article  Google Scholar 

  77. Zhang D, Liu L, Wang J, Zhang H, Zhang Z, Xing G, et al. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front Pharmacol. 2022;13:990505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J, Wang PC, et al. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine [Internet]. 2016 [cited 2023 Sep 7];12:269. Available from: /pmc/articles/PMC4789173/.

  79. Niculescu VC. Mesoporous silica nanoparticles for bio-applications. Front Mater. 2020;7:36.

    Article  Google Scholar 

  80. Akhter F, Rao AA, Abbasi MN, Wahocho SA, Mallah MA, Anees-ur-Rehman H, et al. A Comprehensive review of synthesis, applications and future prospects for silica nanoparticles (SNPs). Silicon 2022 14:14 [Internet]. 2022 [cited 2023 Apr 14];14:8295–310. Available from: https://link.springer.com/article/https://doi.org/10.1007/s12633-021-01611-5.

  81. Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E. How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature. Int J Nanomedicine [Internet]. 2022 [cited 2023 Apr 14];17:1803–27. Available from: https://www.dovepress.com/how-advancing-are-mesoporous-silica-nanoparticles-a-comprehensive-revi-peer-reviewed-fulltext-article-IJN.

  82. Rahikkala A, Pereira SAP, Figueiredo P, Passos MLC, Araújo ARTS, Saraiva MLMFS, et al. Mesoporous silica nanoparticles for targeted and stimuli-responsive delivery of chemotherapeutics: a review. Adv Biosyst [Internet]. 2018 [cited 2023 Apr 14];2:1800020. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/adbi.201800020.

  83. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 2018, Vol 10, Page 118 [Internet]. 2018 [cited 2023 Apr 14];10:118. Available from: https://www.mdpi.com/1999-4923/10/3/118/htm

  84. Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, et al. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm. 2022;625:122099.

  85. Gao Y, Gao D, Shen J, Wang Q. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies. Front Chem. 2020;8:1086.

    Article  Google Scholar 

  86. Zhao Q, Wu B, Shang Y, Huang X, Dong H, Liu H, et al. Development of a nano-drug delivery system based on mesoporous silica and its anti-lymphoma activity. Applied Nanoscience (Switzerland) [Internet]. 2020 [cited 2023 Apr 14];10:3431–42. Available from: https://link.springer.com/article/https://doi.org/10.1007/s13204-020-01465-0.

  87. Zhao Q, Sun X, Wu B, Shang Y, Huang X, Dong H, et al. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J Nanobiotechnology [Internet]. 2021 [cited 2023 Apr 14];19:1–19. Available from: https://jnanobiotechnology.biomedcentral.com/articles/https://doi.org/10.1186/s12951-020-00738-8.

  88. Tewabe A, Abate A, Tamrie M, Seyfu A, Siraj EA. Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc [Internet]. 2021 [cited 2023 Apr 14];14:1711. Available from: /pmc/articles/PMC8275483/

  89. Chen WC, Zhang AX, Li SD. Limitations and niches of the active targeting approach for nanoparticle drug delivery. Eur J Nanomed [Internet]. 2012 [cited 2023 Apr 14];4:89–93. Available from: https://www.degruyter.com/document/doi/https://doi.org/10.1515/ejnm-2012-0010/html?lang=en.

  90. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun [Internet]. 2018 [cited 2023 Apr 14];9. Available from: /pmc/articles/PMC5897557/.

  91. Dong N, Liu Z, He H, Lu Y, Qi J, Wu W. “Hook&Loop” multivalent interactions based on disk-shaped nanoparticles strengthen active targeting. J Control Release. 2023;354:279–93.

    Article  CAS  PubMed  Google Scholar 

  92. Baker JR. Dendrimer-based nanoparticles for cancer therapy. Hematology Am Soc Hematol Educ Program [Internet]. 2009 [cited 2023 Apr 14];708–19. Available from: https://pubmed.ncbi.nlm.nih.gov/20008257/.

  93. Lim J, Kostiainen M, Maly J, Da Costa VCP, Annunziata O, Pavan GM, et al. Synthesis of large dendrimers with the dimensions of small viruses. J Am Chem Soc [Internet]. 2013 [cited 2023 Apr 14];135:4660–3. Available from: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/ja400432e.

  94. Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm [Internet]. 2013 [cited 2023 Apr 14];10:793–812. Available from: https://pubmed.ncbi.nlm.nih.gov/23294202/.

  95. Chittasupho C, Aonsri C, Imaram W. Targeted dendrimers for antagonizing the migration and viability of NALM-6 lymphoblastic leukemia cells. Bioorg Chem [Internet]. 2021 [cited 2023 Apr 14];107. Available from: https://pubmed.ncbi.nlm.nih.gov/33476870/.

  96. Michlewska S, Ionov M, Szwed A, Rogalska A, Olmo NS Del, Ortega P, et al. Ruthenium dendrimers against human lymphoblastic leukemia 1301 cells. Int J Mol Sci [Internet]. 2020 [cited 2023 Apr 14];21:1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/32526993/.

  97. Franiak-Pietryga I, Ostrowska K, Maciejewski H, Ziemba B, Appelhans D, Voit B, et al. Affecting NF-κB cell signaling pathway in chronic lymphocytic leukemia by dendrimers-based nanoparticles. Toxicol Appl Pharmacol. 2018;357:33–8.

    Article  CAS  PubMed  Google Scholar 

  98. Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, et al. Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol [Internet]. 2020 [cited 2023 Apr 14];403. Available from: https://pubmed.ncbi.nlm.nih.gov/32687837/.

  99. Gurdag S, Khandare J, Stapels S, Matherly LH, Kannan RM. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem [Internet]. 2006 [cited 2023 Apr 14];17:275–83. Available from: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/bc0501855.

  100. Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Delivery and Translational Research 2022 13:1 [Internet]. 2022 [cited 2023 Apr 14];13:135–63. Available from: https://link.springer.com/article/https://doi.org/10.1007/s13346-022-01197-4.

  101. Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J Control Release. 2021;332:127–47.

    Article  CAS  PubMed  Google Scholar 

  102. Laskar P, Saha B, Ghosh SK, Dey J. PEG based random copolymer micelles as drug carriers: the effect of hydrophobe content on drug solubilization and cytotoxicity. RSC Adv [Internet]. 2015 [cited 2023 Apr 14];5:16265–76. Available from: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra11479e.

  103. Wang J, Li S, Han Y, Guan J, Chung S, Wang C, et al. Poly(ethylene glycol)-polylactide micelles for cancer therapy. Front Pharmacol. 2018;9:202.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sutton D, Wang S, Nasongkla N, Gao J, Dormidontova EE. Doxorubicin and beta-lapachone release and interaction with micellar core materials: experiment and modeling. Exp Biol Med (Maywood) [Internet]. 2007 [cited 2023 Apr 14];232:1090–9. Available from: https://pubmed.ncbi.nlm.nih.gov/17720955/.

  105. Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36.

    Article  CAS  PubMed  Google Scholar 

  106. Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, et al. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm [Internet]. 2012 [cited 2023 Apr 14];9:2302. Available from: /pmc/articles/PMC3534837/

  107. Wu Y, Sefah K, Liu H, Wang R, Tan W. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A [Internet]. 2010 [cited 2023 Apr 14];107:5–10. Available from: https://www.pnas.org/doi/abs/https://doi.org/10.1073/pnas.0909611107.

  108. Lachowicz D, Karabasz A, Bzowska M, Szuwarzyński M, Karewicz A, Nowakowska M. Blood-compatible, stable micelles of sodium alginate – Curcumin bioconjugate for anti-cancer applications. Eur Polym J. 2019;113:208–19.

    Article  CAS  Google Scholar 

  109. Olusanya TOB, Ahmad RRH, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry [Internet]. 2018 [cited 2023 Apr 14];23. Available from: /pmc/articles/PMC6017847/.

  110. Gu Z, Da Silva CG, van der Maaden K, Ossendorp F, Cruz LJ. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics [Internet]. 2020 [cited 2023 Apr 14];12:1–25. Available from: /pmc/articles/PMC7694212/.

  111. Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: an overview. J Drug Deliv Sci Technol. 2020;56:101549.

    Article  CAS  Google Scholar 

  112. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology 2019 10:1 [Internet]. 2019 [cited 2023 Apr 14];10:1–40. Available from: https://cancer-nano.biomedcentral.com/articles/https://doi.org/10.1186/s12645-019-0055-y.

  113. Fulton MD, Najahi-Missaoui W. Liposomes in cancer therapy: how did we start and where are we now. International Journal of Molecular Sciences 2023, Vol 24, Page 6615 [Internet]. 2023 [cited 2023 Apr 14];24:6615. Available from: https://www.mdpi.com/1422-0067/24/7/6615/htm.

  114. Düzgüneş N, Gregoriadis G. Introduction: The Origins of Liposomes: Alec Bangham at Babraham. Methods Enzymol. 2005;391:1–3.

    Article  Google Scholar 

  115. Wang S, Chen Y, Guo J, Huang Q. Liposomes for tumor targeted therapy: a review. International Journal of Molecular Sciences 2023, Vol 24, Page 2643 [Internet]. 2023 [cited 2023 Apr 14];24:2643. Available from: https://www.mdpi.com/1422-0067/24/3/2643/htm.

  116. Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov V V., Kudlay D, et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. Medchemcomm [Internet]. 2019 [cited 2023 Apr 14];10:369–77. Available from: https://pubs.rsc.org/en/content/articlehtml/2019/md/c8md00515j.

  117. Taher M, Susanti D, Haris MS, Rushdan AA, Widodo RT, Syukri Y, et al. PEGylated liposomes enhance the effect of cytotoxic drug: A review. Heliyon [Internet]. 2023 [cited 2023 Apr 14];9:e13823. Available from: /pmc/articles/PMC9976326/.

  118. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater [Internet]. 2019 [cited 2023 Apr 14];20:710. Available from: /pmc/articles/PMC6598536/.

  119. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics [Internet]. 2017 [cited 2023 Apr 14];9. Available from: /pmc/articles/PMC5489929/.

  120. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules [Internet]. 2022 [cited 2023 Apr 14];27. Available from: /pmc/articles/PMC8879473/.

  121. Fonseca C, Moreira JN, Ciudad CJ, Pedroso De Lima MC, Simões S. Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm [Internet]. 2005 [cited 2023 Apr 14];59:359–66. Available from: https://pubmed.ncbi.nlm.nih.gov/15661509/.

  122. Transferrin As A targeting ligand for liposomes and anticancer drugs - PubMed [Internet]. [cited 2023 Apr 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/10390608/.

  123. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes - PubMed [Internet]. [cited 2023 Apr 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/11743662/.

  124. Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells - PubMed [Internet]. [cited 2023 Apr 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/2788031/.

  125. Cortes JE, Goldberg SL, Feldman EJ, Rizzeri DA, Hogge DE, Larson M, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer [Internet]. 2015 [cited 2023 Apr 14];121:234–42. Available from: https://pubmed.ncbi.nlm.nih.gov/25223583/.

  126. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood [Internet]. 2014 [cited 2023 Apr 14];123:3239–46. Available from: https://pubmed.ncbi.nlm.nih.gov/24687088/.

  127. Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C, et al. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019;14:265–74.

    Article  PubMed  Google Scholar 

  128. Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, et al. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics 2021, Vol 13, Page 1475 [Internet]. 2021 [cited 2023 Apr 14];13:1475. Available from: https://www.mdpi.com/1999-4923/13/9/1475/htm.

  129. Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, et al. Phytosomes as innovative delivery systems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine [Internet]. 2021 [cited 2023 Apr 14];16:6983–7022. Available from: https://pubmed.ncbi.nlm.nih.gov/34703224/.

  130. Babazadeh A, Jafari SM, Shi B. Encapsulation of food ingredients by nanophytosomes. Lipid-based nanostructures for food encapsulation purposes: Volume 2 in the Nanoencapsulation in the Food Industry series. 2019;405–43.

  131. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102–12.

    Article  CAS  PubMed  Google Scholar 

  132. Karpuz M, Gunay MS, Ozer AY. Liposomes and phytosomes for phytoconstituents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. 2020;525–53.

  133. Ghanbarzadeh B, Babazadeh A, Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016;15:126–35.

    Article  CAS  Google Scholar 

  134. Shalini S, Kumar RR, Birendra S. Antiproliferative effect of phytosome complex of methanolic extact of Terminalia arjuna bark on human breast cancer cell lines (MCF-7). International Journal of Drug Development and Research [Internet]. 2015 [cited 2023 Apr 14];7. Available from: https://www.ijddr.in/abstract/antiproliferative-effect-of-phytosome-complex-of-methanolic-extact-ofterminalia-arjuna-bark-on-human-breast-cancer-cell-lines-mcf7-6474.html.

  135. Carica Papaya: formulation and evaluation of new dosage form design | International Journal of Pharmaceutical Sciences and Research [Internet]. [cited 2023 Apr 14]. Available from: https://ijpsr.com/bft-article/carica-papaya-formulation-and-evaluation-of-new-dosage-form-design/.

  136. Development and evaluation of anti-cancer activity of phytosome formulated from the root extract of Clerodendron paniculatum Linn | Request PDF [Internet]. [cited 2023 Apr 14]. Available from: https://www.researchgate.net/publication/311270267_Development_and_evaluation_of_anti-cancer_activity_of_phytosome_formulated_from_the_root_extract_of_Clerodendron_paniculatum_Linn.

  137. Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Molecular Cancer 2020 19:1 [Internet]. 2020 [cited 2023 Apr 14];19:1–16. Available from: https://molecular-cancer.biomedcentral.com/articles/https://doi.org/10.1186/s12943-020-01278-3.

  138. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics [Internet]. 2018 [cited 2023 Apr 14];8:237–55. Available from: https://pubmed.ncbi.nlm.nih.gov/29290805/.

  139. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduction and Targeted Therapy 2020 5:1 [Internet]. 2020 [cited 2023 Apr 14];5:1–10. Available from: https://www.nature.com/articles/s41392-020-00261-0.

  140. Chen L, Wang L, Zhu L, Xu Z, Liu Y, Li Z, et al. Exosomes as drug carriers in anti-cancer therapy. Front Cell Dev Biol. 2022;10:34.

    Google Scholar 

  141. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest [Internet]. 2016 [cited 2023 Apr 14];126:1208–15. Available from: https://pubmed.ncbi.nlm.nih.gov/27035812/.

  142. Li I, Nabet BY. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer [Internet]. 2019 [cited 2023 Apr 14];18:1–10. Available from: https://molecular-cancer.biomedcentral.com/articles/https://doi.org/10.1186/s12943-019-0975-5.

  143. Luo H, Yi B. The role of exosomes in the pathogenesis of nasopharyngeal carcinoma and the involved clinical application. Int J Biol Sci [Internet]. 2021 [cited 2023 Apr 14];17:2147. Available from: /pmc/articles/PMC8241729/.

  144. Aheget H, Mazini L, Martin F, Belqat B, Marchal JA, Benabdellah K. Exosomes: their role in pathogenesis, diagnosis and treatment of diseases. Cancers (Basel) [Internet]. 2021 [cited 2023 Apr 14];13:1–45. Available from: /pmc/articles/PMC7795854/.

  145. Deng W, Wang L, Pan M, Zheng J. The regulatory role of exosomes in leukemia and their clinical significance. J Int Med Res [Internet]. 2020 [cited 2023 Apr 14];48. Available from: /pmc/articles/PMC7450464/.

  146. Panagiotara A, Markou A, Lianidou ES, Patrinos GP, Katsila T. Exosomes: a cancer theranostics road map. Public Health Genomics [Internet]. 2017 [cited 2023 Apr 14];20:116–25. Available from: https://www.karger.com/Article/FullText/478253.

  147. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature [Internet]. 2015 [cited 2023 Apr 14];523:177–82. Available from: https://pubmed.ncbi.nlm.nih.gov/26106858/.

  148. Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, et al. Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes. 2020;51:101513.

    Article  CAS  PubMed  Google Scholar 

  149. Min QH, Wang XZ, Zhang J, Chen QG, Li SQ, Liu XQ, et al. Exosomes derived from imatinib-resistant chronic myeloid leukemia cells mediate a horizontal transfer of drug-resistant trait by delivering miR-365. Exp Cell Res [Internet]. 2018 [cited 2023 Apr 14];362:386–93. Available from: https://pubmed.ncbi.nlm.nih.gov/29223442/.

  150. Liu Y, Song B, Wei Y, Chen F, Chi Y, Fan H, et al. Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy [Internet]. 2018 [cited 2023 Apr 14];20:181–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29269240/.

  151. Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv [Internet]. 2022 [cited 2023 Apr 14];29:664. Available from: /pmc/articles/PMC8890514/.

  152. Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mat Today. 2018;21:673–85.

    Article  CAS  Google Scholar 

  153. Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, et al. Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics [Internet]. 2022 [cited 2023 Apr 14];14. Available from: /pmc/articles/PMC8874382/.

  154. Shakil MS, Niloy MS, Mahmud KM, Kamal MA, Islam MA. Theranostic potentials of gold nanomaterials in hematological malignancies. Cancers (Basel) [Internet]. 2022 [cited 2023 Apr 14];14. Available from: https://pubmed.ncbi.nlm.nih.gov/35804818/.

  155. Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm [Internet]. 2019 [cited 2023 Apr 14];16:1–23. Available from: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/acs.molpharmaceut.8b00810.

  156. Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. Journal of Nanobiotechnology 2022 20:1 [Internet]. 2022 [cited 2023 Apr 14];20:1–34. Available from: https://jnanobiotechnology.biomedcentral.com/articles/https://doi.org/10.1186/s12951-022-01402-z.

  157. Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res [Internet]. 2006 [cited 2023 Apr 14];67:47–54. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/ddr.20066.

  158. Chang Y, Zheng C, Chinnathambi A, Alahmadi TA, Alharbi SA. Cytotoxicity, anti-acute leukemia, and antioxidant properties of gold nanoparticles green-synthesized using Cannabis sativa L leaf aqueous extract. Arab J Chem. 2021;14:103060.

    Article  CAS  Google Scholar 

  159. Anu K, Devanesan S, Prasanth R, AlSalhi MS, Ajithkumar S, Singaravelu G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J King Saud Univ Sci. 2020;32:2520–6.

    Article  Google Scholar 

  160. AbouAitah K, Hassan HA, Ammar NM, Abou Baker DH, Higazy IM, Shaker OG, et al. Novel delivery system with a dual–trigger release of savory essential oil by mesoporous silica nanospheres and its possible targets in leukemia cancer cells: in vitro study. Cancer Nanotechnology 2023 14:1 [Internet]. 2023 [cited 2023 Apr 15];14:1–32. Available from: https://cancer-nano.biomedcentral.com/articles/https://doi.org/10.1186/s12645-022-00152-9.

  161. Cauda V, Xu TT, Nunes I, Mereu E, Villata S, Bergaggio E, et al. Biomimetic mesoporous vectors enabling the efficient inhibition of wild-type isocitrate dehydrogenase in multiple myeloma cells. Micro MesoporMat. 2021;325:111320.

    CAS  Google Scholar 

  162. Sk UH, Hira SK, Rej A, Roymahapatra D, Manna PP. Development of a PAMAM dendrimer for sustained release of temozolomide against experimental murine lymphoma: assessment of therapeutic efficacy. ACS Appl Bio Mater [Internet]. 2021 [cited 2023 Apr 15];4:2628–38. Available from: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/acsabm.0c01599.

  163. Michlewska S, Ionov M, Szwed A, Rogalska A, Olmo NS Del, Ortega P, et al. Ruthenium dendrimers against human lymphoblastic leukemia 1301 cells. International Journal of Molecular Sciences 2020, Vol 21, Page 4119 [Internet]. 2020 [cited 2023 Apr 15];21:4119. Available from: https://www.mdpi.com/1422-0067/21/11/4119/htm.

  164. Wang MY, Qu Y, Hu DR, Chen LJ, Shi K, Jia YP, et al. Methotrexate-loaded biodegradable polymeric micelles for lymphoma therapy. Int J Pharm. 2019;557:74–85.

    Article  CAS  PubMed  Google Scholar 

  165. Bae KH, Lai F, Mong J, Niibori-Nambu A, Chan KH, Her Z, et al. Bone marrow-targetable green tea catechin-based micellar nanocomplex for synergistic therapy of acute myeloid leukemia. J Nanobiotechnology [Internet]. 2022 [cited 2023 Apr 15];20:1–18. Available from: https://jnanobiotechnology.biomedcentral.com/articles/https://doi.org/10.1186/s12951-022-01683-4.

  166. Varela-Moreira A, van Straten D, van Leur HF, Ruiter RWJ, Deshantri AK, Hennink WE, et al. Polymeric micelles loaded with carfilzomib increase tolerability in a humanized bone marrow-like scaffold mouse model. Int J Pharm X. 2020;2:100049.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. McCallion C, Peters AD, Booth A, Rees-Unwin K, Adams J, Rahi R, et al. Dual-action CXCR4-targeting liposomes in leukemia: function blocking and drug delivery. Blood Adv [Internet]. 2019 [cited 2023 Apr 15];3:2069–81. Available from: https://ashpublications.org/bloodadvances/article/3/14/2069/260105/Dual-action-CXCR4-targeting-liposomes-in-leukemia.

  168. Deshantri AK, Fens MH, Ruiter RWJ, Metselaar JM, Storm G, van Bloois L, et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J Control Release. 2019;296:232–40.

    Article  CAS  PubMed  Google Scholar 

  169. Lin Z, Chu B, Qu Y, Wei X, Huang J, Wang F, et al. Liposome-encapsulated melphalan exhibits potent antimyeloma activity and reduced toxicity. ACS Omega [Internet]. 2022 [cited 2023 Apr 15]; Available from: https://pubs.acs.org/doi/full/https://doi.org/10.1021/acsomega.2c07555.

  170. Deng R, Ji B, Yu H, Bao W, Yang Z, Yu Y, et al. Multifunctional gold nanoparticles overcome microRNA regulatory network mediated-multidrug resistant leukemia. Scientific Reports 2019 9:1 [Internet]. 2019 [cited 2023 Apr 15];9:1–11. Available from: https://www.nature.com/articles/s41598-019-41866-y.

  171. Ahmeda A, Zangeneh A, Zangeneh MM. Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl Organomet Chem [Internet]. 2020 [cited 2023 Apr 15];34:e5290. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/aoc.5290.

  172. Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, et al. Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother. 2020;122:109712.

    Article  CAS  PubMed  Google Scholar 

  173. Xu Z, Wu Y, Song L, Chinnathambi A, Ali Alharbi S, Fang L. Anticarcinogenic effect of zinc oxide nanoparticles synthesized from Rhizoma paridis saponins on Molt-4 leukemia cells. J King Saud Univ Sci. 2020;32:1865–71.

    Article  Google Scholar 

  174. Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. International Journal of Molecular Sciences 2020, Vol 21, Page 6018 [Internet]. 2020 [cited 2023 Sep 7];21:6018. Available from: https://www.mdpi.com/1422-0067/21/17/6018/htm.

  175. M. Cardoso M, N. Peca I, C. A. Roque A. Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem [Internet]. 2012 [cited 2023 Sep 7];19:3103–27. Available from: https://pubmed.ncbi.nlm.nih.gov/22612698/.

  176. Johnston MC, Scott CJ. Antibody conjugated nanoparticles as a novel form of antibody drug conjugate chemotherapy. Drug Discov Today Technol [Internet]. 2018 [cited 2023 Sep 7];30:63–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30553522/.

  177. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy 2022 7:1 [Internet]. 2022 [cited 2023 Sep 7];7:1–25. Available from: https://www.nature.com/articles/s41392-022-00947-7.

  178. Rossi C, Chrétien ML, Casasnovas RO. Antibody-drug conjugates for the treatment of hematological malignancies: a comprehensive review. Target Oncol [Internet]. 2018 [cited 2023 Sep 7];13:287–308. Available from: https://pubmed.ncbi.nlm.nih.gov/29556925/.

  179. Goli N, Bolla PK, Talla V. Antibody-drug conjugates (ADCs): Potent biopharmaceuticals to target solid and hematological cancers—an overview. J Drug Deliv Sci Technol. 2018;48:106–17.

    Article  CAS  Google Scholar 

  180. Alizadeh Zeinabad H, Yeoh WJ, Arif M, Lomora M, Banz Y, Riether C, et al. Natural killer cell-mimic nanoparticles can actively target and kill acute myeloid leukemia cells. Biomaterials. 2023;298:122126.

    Article  CAS  PubMed  Google Scholar 

  181. Park M, Vaikari VP, Lam AT, Zhang Y, MacKay JA, Alachkar H. Anti-FLT3 nanoparticles for acute myeloid leukemia: preclinical pharmacology and pharmacokinetics. J Contr Rel. 2020;324:317–29.

    Article  CAS  Google Scholar 

  182. Mandal T, Beck M, Kirsten N, Lindén M, Buske C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Scientific Reports 2018 8:1 [Internet]. 2018 [cited 2023 Sep 7];8:1–8. Available from: https://www.nature.com/articles/s41598-017-18932-4.

  183. Jiang G, Huang Z, Yuan Y, Tao K, Feng W. Intracellular delivery of anti-BCR/ABL antibody by PLGA nanoparticles suppresses the oncogenesis of chronic myeloid leukemia cells. J Hematol Oncol [Internet]. 2021 [cited 2023 Sep 7];14:1–18. Available from: https://jhoonline.biomedcentral.com/articles/https://doi.org/10.1186/s13045-021-01150-x.

  184. Fotouhi P, Sohrabi S, Nosrati N, Vaziri AZ, Khaleghi S, Narmani A, et al. Surface modified and rituximab functionalized PAMAM G4 nanoparticle for targeted imatinib delivery to leukemia cells: In vitro studies. Process Biochem. 2021;111:221–9.

    Article  CAS  Google Scholar 

  185. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537:223–44.

    Article  CAS  PubMed  Google Scholar 

  186. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharmaceutica 2019, Vol 87, Page 20 [Internet]. 2019 [cited 2023 Apr 15];87:20. Available from: https://www.mdpi.com/2218-0532/87/3/20/htm.

  187. Nidhi, Rashid M, Kaur V, Hallan SS, Sharma S, Mishra N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: a brief review. Saudi Pharm J [Internet]. 2016 [cited 2023 Apr 15];24:458–72. Available from: https://pubmed.ncbi.nlm.nih.gov/27330377/.

  188. Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, et al. Poly(lactic acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics [Internet]. 2022 [cited 2023 Apr 15];14. Available from: /pmc/articles/PMC8877458/

  189. Liu Y, Wang S, Xia H, Tan X, Song S, Zhang S, et al. The potential applications of microparticles in the diagnosis, treatment, and prognosis of lung cancer. Journal of Translational Medicine 2022 20:1 [Internet]. 2022 [cited 2023 Apr 15];20:1–16. Available from: https://translational-medicine.biomedcentral.com/articles/https://doi.org/10.1186/s12967-022-03599-x.

  190. Gong J, Jaiswal R, Dalla P, Luk F, Bebawy M. Microparticles in cancer: a review of recent developments and the potential for clinical application. Semin Cell Dev Biol. 2015;40:35–40.

    Article  CAS  PubMed  Google Scholar 

  191. Hu Y, Sun Y, Wan C, Dai X, Wu S, Lo PC, et al. Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. Journal of Nanobiotechnology 2022 20:1 [Internet]. 2022 [cited 2023 Apr 15];20:1–28. Available from: https://jnanobiotechnology.biomedcentral.com/articles/https://doi.org/10.1186/s12951-022-01358-0.

  192. Ball S, Nugent K. Microparticles in hematological malignancies: role in coagulopathy and tumor pathogenesis. Am J Med Sci [Internet]. 2018 [cited 2023 Apr 15];355:207–14. Available from: http://www.amjmedsci.org/article/S0002962917306456/fulltext.

  193. Xiang HL, Chen Y, Wang JW, Wang HJ, Gao XF, Li H, et al. Enhancing cytotoxicity of daunorubicin on drug-resistant leukaemia cells with microparticle-mediated drug delivery system. J Microencapsul [Internet]. 2019 [cited 2023 Apr 15];36:291–304. Available from: https://pubmed.ncbi.nlm.nih.gov/31151361/.

  194. Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, et al. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. Journal of Biomedical Science 2021 28:1 [Internet]. 2021 [cited 2023 Apr 15];28:1–24. Available from: https://jbiomedsci.biomedcentral.com/articles/https://doi.org/10.1186/s12929-021-00744-4.

  195. Al-Jawadi S, Thakur SS. Ultrasound-responsive lipid microbubbles for drug delivery: a review of preparation techniques to optimise formulation size, stability and drug loading. Int J Pharm. 2020;585:119559.

    Article  CAS  PubMed  Google Scholar 

  196. Sirsi SR, Borden MA. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol [Internet]. 2009 [cited 2023 Apr 15];1:3. Available from: /pmc/articles/PMC2889676/.

  197. Rajendran MA. Ultrasound-guided microbubble in the treatment of cancer: a mini narrative review. Cureus [Internet]. 2018 [cited 2023 Apr 15];10. Available from: /pmc/articles/PMC6217872/.

  198. Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies C de L. Ultrasound and microbubbles to beat barriers in tumors: improving delivery of nanomedicine. Adv Drug Deliv Rev. 2021;177:113847.

  199. Liu S, Zhang Y, Liu Y, Wang W, Gao S, Yuan W, et al. Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. British Journal of Cancer 2022 128:5 [Internet]. 2022 [cited 2023 Apr 15];128:715–25. Available from: https://www.nature.com/articles/s41416-022-02076-y.

  200. Sharma D, Leong KX, Czarnota GJ. Application of ultrasound combined with microbubbles for cancer therapy. International Journal of Molecular Sciences 2022, Vol 23, Page 4393 [Internet]. 2022 [cited 2023 Apr 15];23:4393. Available from: https://www.mdpi.com/1422-0067/23/8/4393/htm.

  201. Zhong W, Sit WH, Wan JMF, Yu ACH. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells. Ultrasound Med Biol [Internet]. 2011 [cited 2023 Apr 15];37:2149–59. Available from: https://pubmed.ncbi.nlm.nih.gov/22033133/.

  202. Shi F, Li M, Wang J, Wu D, Pan M, Guo M, et al. Induction of multiple myeloma cancer stem cell apoptosis using conjugated anti-ABCG2 antibody with epirubicin-loaded microbubbles. Stem Cell Res Ther [Internet]. 2018 [cited 2023 Apr 15];9:1–11. Available from: https://stemcellres.biomedcentral.com/articles/https://doi.org/10.1186/s13287-018-0885-2.

  203. Lapotko DO, Lukianova E, Oraevsky AA. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg Med [Internet]. 2006 [cited 2023 Apr 15];38:631–42. Available from: https://pubmed.ncbi.nlm.nih.gov/16736503/.

Download references

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Group Research Project under grant number RGP.1/433/44. Graphical abstract and Fig. 1 are created with BioRender.com.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Group Research Project under grant number RGP.1/433/44.

Author information

Authors and Affiliations

Authors

Contributions

UH, BHJG, NH, KVRNSR, KP, SA, MGA, SN, and SM wrote the main manuscript text. UH, BHJG, and PK proofread and supervise during writing of the original manuscript. All authors reviewed the manuscript. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Umme Hani, B. H. Jaswanth Gowda or Prashant Kesharwani.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hani, U., Gowda, B.H.J., Haider, N. et al. Nanoparticle-Based Approaches for Treatment of Hematological Malignancies: a Comprehensive Review. AAPS PharmSciTech 24, 233 (2023). https://doi.org/10.1208/s12249-023-02670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02670-0

Keywords

Navigation