Skip to main content

Advertisement

Log in

Fabrication and Evaluation of Anticancer Potential of Eugenol Incorporated Chitosan-Silver Nanocomposites: In Vitro, In Vivo, and In Silico Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The expanding global cancer burden necessitates a comprehensive strategy to promote possible therapeutic interventions. Nanomedicine is a cutting-edge approach for treating cancer with minimal adverse effects. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Eugenol (EGN) were synthesized and evaluated for their anticancer activity against breast cancer cells (MCF-7). The physical, pharmacological, and molecular docking studies were used to characterize these nanoparticles. EGN had been effectively entrapped into hybrid NPs (84 ± 7%). The EGN-ChAgNPs had a diameter of 128 ± 14 nm, a PDI of 0.472 ± 0.118, and a zeta potential of 30.58 ± 6.92 mV. Anticancer activity was measured in vitro using an SRB assay, and the findings revealed that EGN-ChAgNPs demonstrated stronger anticancer activity against MCF-7 cells (IC50 = 14.87 ± 5.34 µg/ml) than pure EGN (30.72 ± 4.91 µg/ml). To support initial cytotoxicity findings, advanced procedures such as cell cycle analysis and genotoxicity were performed. Tumor weight reduction and survival rate were determined using different groups of mice. Both survival rates and tumor weight reduction were higher in the EGN-ChAgNPs (12.5 mg/kg) treated group than in the pure EGN treated group. Based on protein–ligand interactions, it might be proposed that eugenol had a favorable interaction with Aurora Kinase A. It was observed that C9 had the highest HYDE score of any sample, measuring at -6.8 kJ/mol. These results, in conjunction with physical and pharmacological evaluations, implies that EGN-ChAgNPs may be a suitable drug delivery method for treating breast cancer in a safe and efficient way.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data related to this study are present within the manuscript.

References

  1. Wadhwa J, Saigal A. Cancer and COVID-19: Currently in race for the title of “The Emperor of All Maladies!” Indian J Med Paediatr Oncol. 2020;41(03):303–4.

    Article  Google Scholar 

  2. Singh D, Vaccarella S, Gini A, De Paula SN, Steliarova-Foucher E, Bray F. Global patterns of Hodgkin lymphoma incidence and mortality in 2020 and a prediction of the future burden in 2040. Int J Cancer. 2022;150(12):1941–7.

    Article  CAS  PubMed  Google Scholar 

  3. Zari A, Alfarteesh H, Buckner C, Lafrenie R. Treatment with Uncaria tomentosa Promotes Apoptosis in B16-BL6 Mouse Melanoma Cells and Inhibits the Growth of B16-BL6 Tumours. Molecules. 2021;26(4):1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mittal M, Gupta N, Parashar P, Mehra V, Khatri M. Phytochemical evaluation and pharmacological activity of Syzygium aromaticum: a comprehensive review. Int J Pharm Pharm Sci. 2014;6(8):67–72.

    CAS  Google Scholar 

  5. El-SaberBatiha G, MagdyBeshbishy A, El-Mleeh A, Abdel-Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L.(Fabaceae). Biomolecules. 2020;10(3):352.

    Article  CAS  Google Scholar 

  6. Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit Rev Microbiol. 2017;43(6):668–89.

    Article  CAS  PubMed  Google Scholar 

  7. Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxid Med Cell Longevity. 2021;2021:2497354.

    Article  Google Scholar 

  8. Abdullah ML, Al-Shabanah O, Hassan ZK, Hafez MM. Eugenol-induced autophagy and apoptosis in breast cancer cells via PI3K/AKT/FOXO3a pathway inhibition. Int J Mol Sci. 2021;22(17):9243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Permatasari HK, Effendi AB, Qhabibi FR, Fawwaz F, Dominique A. Eugenol isolated from Syzygium aromaticum inhibits HeLa cancer cell migration by altering epithelial-mesenchymal transition protein regulators. J Appl Pharm Sci. 2021;11(5):049–53.

    CAS  Google Scholar 

  10. Petrocelli G, Farabegoli F, Valerii MC, Giovannini C, Sardo A, Spisni E. Molecules present in plant essential oils for prevention and treatment of colorectal cancer (CRC). Molecules. 2021;26(4):885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yi J-L, Shi S, Shen Y-L, Wang L, Chen H-Y, Zhu J, et al. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int J Clin Exp Pathol. 2015;8(2):1116.

    PubMed  PubMed Central  Google Scholar 

  12. Pautler M, Brenner S. Nanomedicine: promises and challenges for the future of public health. Int J Nanomed. 2010;5:803–9.

    Google Scholar 

  13. Tsai N, Lee B, Kim A, Yang R, Pan R, Lee D-K, et al. Nanomedicine for global health. SLAS Technol. 2014;19(6):511–6.

    Article  Google Scholar 

  14. Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, et al. Metabolites from algae with economical impact. Comp Biochem Physiol Part C Toxicol Pharmacol. 2007;146(1–2):60–78.

    Article  Google Scholar 

  15. Vigneshwaran N, Nachane R, Balasubramanya R, Varadarajan P. A novel one-pot ‘green’synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res. 2006;341(12):2012–8.

    Article  CAS  PubMed  Google Scholar 

  16. Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomater. 2018;8(9):681.

    Article  Google Scholar 

  17. Faisal N, Kumar K. Polymer and metal nanocomposites in biomedical applications. Biointerface Res Appl Chem. 2017;7(6):2286–94.

    CAS  Google Scholar 

  18. Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen). J Agardh Mater Lett. 2014;137:1–4.

    Article  CAS  Google Scholar 

  19. Kotcherlakota R, Das S, Patra CR. Therapeutic applications of green-synthesized silver nanoparticles. Green synthesis, characterization and applications of nanoparticles. Micro and Nano Technologies. 2019;389–428.

  20. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  21. Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomed. 2016;11:1899.

    CAS  Google Scholar 

  22. Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, et al. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother. 2016;84:158–65.

    Article  CAS  PubMed  Google Scholar 

  23. Khan Y, Numan M, Ali M, Khali A, Ali T, Abbas N, et al. Bio-synthesized silver nanoparticles using different plant extracts as anti-cancer agent. J Nanomed Biother Discovery. 2017;7(154):2.

    CAS  Google Scholar 

  24. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discovery Today. 2015;20(9):1143–51.

    Article  CAS  PubMed  Google Scholar 

  25. Gounden S, Daniels A, Singh M. Chitosan-modified silver nanoparticles enhance cisplatin activity in breast cancer cells. Biointerface Res Appl Chem. 2021;11:10572–84.

    CAS  Google Scholar 

  26. Varadavenkatesan T, Selvaraj R, Vinayagam R. Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater Today Proc. 2020;23:39–42.

    Article  CAS  Google Scholar 

  27. Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-Physicochemical characterization, drug release, stability and cytotoxicity. J Drug Delivery Sci Technol. 2018;45:45–53.

    Article  CAS  Google Scholar 

  28. Mohamed N. Synthesis of hybrid chitosan silver nanoparticles loaded with doxorubicin with promising anti-cancer activity. J Bionanosci. 2020;10(3):758–65.

    Article  Google Scholar 

  29. Varan C, Anceschi A, Sevli S, Bruni N, Giraudo L, Bilgic E, et al. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int J Pharm. 2020;585: 119485.

    Article  CAS  PubMed  Google Scholar 

  30. Shah HS, Usman F, Ashfaq-Khan M, Khalil R, Ul-Haq Z, Mushtaq A, et al. Preparation and characterization of anticancer niosomal withaferin–A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation. J Drug Delivery Sci Technol. 2020;59: 101863.

    Article  CAS  Google Scholar 

  31. Rezazadeh NH, Buazar F, Matroodi S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci Rep. 2020;10(1):19615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6.

    Article  CAS  PubMed  Google Scholar 

  33. Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol. 2010;649(1–3):84–91.

    Article  Google Scholar 

  34. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  35. Lin G-J, Jiang G-B, Xie Y-Y, Huang H-L, Liang Z-H, Liu Y-J. Cytotoxicity, apoptosis, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential, and Western blotting analysis of ruthenium (II) complexes. JBIC J Biol Inorg Chem. 2013;18:873–82.

    Article  CAS  PubMed  Google Scholar 

  36. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.

    Article  PubMed  PubMed Central  Google Scholar 

  37. De La Cruz DL, Prokai L, Prokai-Tatrai K. The antagonist pGlu-βGlu-Pro-NH2 binds to an allosteric site of the thyrotropin-releasing hormone receptor. Molecules. 2021;26(17):5397.

    Article  PubMed  Google Scholar 

  38. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol. 2017;1607:627–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reulecke I, Lange G, Albrecht J, Klein R, Rarey M. Towards an integrated description of hydrogen bonding and dehydration: decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem. 2008;3(6):885–97.

    Article  CAS  PubMed  Google Scholar 

  40. Schneider N, Lange G, Hindle S, Klein R, Rarey M. A consistent description of HYdrogen bond and DEhydration energies in protein–ligand complexes: methods behind the HYDE scoring function. J Comput-Aided Mol Des. 2013;27:15–29.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B. 2017;5(29):5690–713.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen N-T, Liu J-H. A green method for in situ synthesis of poly (vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem Eng. 2014;45(5):2827–33.

    Article  CAS  Google Scholar 

  43. Shetta A, Kegere J, Mamdouh W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol. 2019;126:731–42.

    Article  CAS  PubMed  Google Scholar 

  44. Aftab A, Bashir S, Rafique S, Ghani T, Khan R, Bashir M, et al. Microfluidic platform for encapsulation of plant extract in chitosan microcarriers embedding silver nanoparticles for breast cancer cells. App Nanosci. 2020;10:2281–93.

    Article  CAS  Google Scholar 

  45. Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales JD, Vázquez-Lepe M, Kovalenko Y, et al. Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J. 2015;67:242–51.

    Article  CAS  Google Scholar 

  46. Raj S, Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, Ruokolainen J, Das BC, Kumar D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol. 2021;69:166–77.

    Article  CAS  PubMed  Google Scholar 

  47. Betzer O, Shilo M, Opochinsky R, Barnoy E, Motiei M, Okun E, et al. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomed. 2017;12(13):1533–46.

    Article  CAS  Google Scholar 

  48. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Delivery Rev. 2011;63(3):131–5.

    Article  CAS  Google Scholar 

  49. Parmar K, Patel J, Pathak Y. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. In: Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems. Springer; 2022. p. 261–72.

    Chapter  Google Scholar 

  50. Hackley VA, Clogston JD. Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. Methods Mol Bio. 2011;697:35–52.

    Article  CAS  Google Scholar 

  51. Chai MHH, Amir N, Yahya N, Saaid IM. Characterization and colloidal stability of surface modified zinc oxide nanoparticle. J Phys Conf Ser. IOP Publishing; 2018.

    Google Scholar 

  52. Rodriguez-Argueelles MC, Sieiro C, Cao R, Nasi L. Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. J Colloid Interface Sci. 2011;364(1):80–4.

    Article  CAS  Google Scholar 

  53. Chen Q, Jiang H, Ye H, Li J, Huang J. Preparation, antibacterial, and antioxidant activities of silver/chitosan composites. J Carbohydr Chem. 2014;33(6):298–312.

    Article  CAS  Google Scholar 

  54. Kurpiers M, Wolf JD, Steinbring C, Zaichik S, Bernkop-Schnürch A. Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. J Mol Liq. 2020;316: 113868.

    Article  CAS  Google Scholar 

  55. Kamble S, Agrawal S, Cherumukkil S, Sharma V, Jasra RV, Munshi P. Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect. 2022;7(1): e202103084.

    Article  CAS  Google Scholar 

  56. Larsson M, Hill A, Duffy J. Suspension stability; why particle size, zeta potential and rheology are important. Annu Trans Nordic Rheol Soc. 2012;2012(20):6.

    Google Scholar 

  57. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  58. Zein R, Sharrouf W, Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol. 2020;2020:5194780.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yamazoe Y, Mitsumori K. Assessment of nongenotoxic mechanisms in carcinogenicity test of chemicals; quinone, quinone imine, and quinone methide as examples. Thresholds of Genotoxic Carcinogens. 2016;171–92.

  60. Qin H, Zhang H, Li L, Zhou X, Li J, Kan C. Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Adv. 2017;7(83):52684–93.

    Article  CAS  Google Scholar 

  61. Pereira AKdS, Reis DT, Barbosa KM, Scheidt GN, da Costa LS, Santos LSS. Antibacterial effects and ibuprofen release potential using chitosan microspheres loaded with silver nanoparticles. Carbohydr Res. 2020;488:107891.

    Article  CAS  PubMed  Google Scholar 

  62. Shukl AK, Iravani S. Green synthesis, characterization and applications of nanoparticles. Elsevier; 2018.

    Google Scholar 

  63. Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chem Eng. 2014;2(3):367–76.

    Article  CAS  Google Scholar 

  64. Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Badhwar R, Mangla B, Neupane YR, Khanna K, Popli H. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. Nanotechnol. 2021;32(50):505102.

    Article  CAS  Google Scholar 

  66. Singh AK, Talat M, Singh D, Srivastava O. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res. 2010;12:1667–75.

    Article  CAS  Google Scholar 

  67. Shahabadi N, Akbari A, Karampour F, Falsafi M. Cytotoxicity and antibacterial activities of new chemically synthesized magnetic nanoparticles containing eugenol. J Drug Delivery Sci Technol. 2019;49:113–22.

    Article  CAS  Google Scholar 

  68. Clementi E, Garajova Z, Markkanen E. Measuring DNA damage using the alkaline comet assay in cultured cells. Bio-Protoc. 2021;11(16):e4119-e.

    Article  Google Scholar 

  69. Jagetia GC. Isoquinoline alkaloid berberine exerts its antineoplastic activity by inducing molecular DNA damage in HeLa cells: A comet assay study. Biol Med. 2015;7(1):1.

    Google Scholar 

  70. Shah HS, Nasrullah U, Zaib S, Usman F, Khan A, Gohar UF, et al. Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; in vitro, in vivo and molecular docking studies. Molecules. 2021;26(22):6990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vijayan S, Divya K, Jisha M. In vitro anticancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines. Appl Nanosci. 2020;10:715–28.

    Article  CAS  Google Scholar 

  72. Allaoui A, Gascón S, Benomar S, Quero J, Osada J, Nasri M, et al. Protein hydrolysates from fenugreek (Trigonella foenum graecum) as nutraceutical molecules in colon cancer treatment. Nutrients. 2019;11(4):724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Almalki DA, Naguib DM. Anticancer activity of aqueous fenugreek seed extract against pancreatic cancer, histological evidence. J Gastrointest Cancer. 2022;53(3):683–6.

    Article  CAS  PubMed  Google Scholar 

  74. Greenstein GR. The Merck index: An encyclopedia of chemicals, drugs, and biologicals. Ref Rev. 2007;21(6):40-.

    Google Scholar 

  75. Burdock GA. Fenaroli’s handbook of flavor ingredients. 6th ed. CRC Press; 2016. p. 2159.

    Book  Google Scholar 

  76. Burdock GA. Fenaroli’s Handbook of Flavor Ingredients: Volume 2. CRC Press; 2019.

    Google Scholar 

  77. Oliveira FdA, Andrade LN, De Sousa ÉBV, De Sousa DP. Anti-ulcer activity of essential oil constituents. Molecules. 2014;19(5):5717–47.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fu J, Bian M, Jiang Q, Zhang C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res. 2007;5(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  79. De Groot CO, Hsia JE, Anzola JV, Motamedi A, Yoon M, Wong YL, et al. A cell biologist’s field guide to aurora kinase inhibitors. Front Oncol. 2015;5:285.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work: Hamid Saeed Shah, Faisal Usman and Sumera Zaib Acquisition, analysis, or interpretation of data for the work Hamid Saeed Shah,Faisal Usman, Sumera Zaib, Aamir Mushtaq, Hafiz Muhammad Mazhar Asjad, Muhammad Sarfraz, Mohamed M. Ibrahim, A. Alhadhrami and Muhammad Sajjad. Drafting the work or revising it critically for important intellectual content: Memoona Ishtiaq and A. Alhadhrami. Final approval of the version to be published: All authors Agreement to be accountable 836 for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Hamid Saeed Shah.

Ethics declarations

Institutional Review Board (IRB) Statement

The study design entitled “Fabrication and Evaluation of Anticancer Potential of Eugenol Incorporated Chitosan-Silver Nanocomposites: in vitro, in vivo, and in silico studies” was approved by the research committee on Biosafety and Bioethics (approval number: (235/PEC/22), faculty of pharmacy at Bahauddin Zakariya University Multan (60800), Pakistan. The scientists have been instructed to strictly adhere to guidelines for mice that have previously been authorized by the ethics committee.

Informed Consent Statement

Not applicable.

Sample Availability

Samples of the compounds are available from the authors on reasonable request.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, H.S., Zaib, S., Sarfraz, M. et al. Fabrication and Evaluation of Anticancer Potential of Eugenol Incorporated Chitosan-Silver Nanocomposites: In Vitro, In Vivo, and In Silico Studies. AAPS PharmSciTech 24, 168 (2023). https://doi.org/10.1208/s12249-023-02631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02631-7

Keywords

Navigation