Skip to main content

Advertisement

Log in

siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight

  • Review Article
  • Recent Advances on Drug Delivery Systems for Viral Infections
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of “drug-likeness” (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RNAi:

RNA interference

siRNA:

small-interfering RNA

ASO:

antisense oligonucleotides

dsRNA:

double-stranded RNA

RNA:

Ribonucleic acid

DNA:

Deoxyribonucleic acid

CPP:

Cell penetrating peptide

pFPhe:

Parafluorophenylalanine

SFV:

Semliki Forest virus

HCV:

Hepatitis C Virus

mRNA:

Messenger RNA

rcDNA:

double-stranded stretched circular DNA

HBV:

Hepatitis B Virus

SNALP:

Stable nucleic acid-lipid particle

HIV:

Human Immunodeficiency Virus

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

TLR-9:

toll-like receptor-9

AuNPs:

Gold nanoparticles

miRNA:

microRNA

pre-miRNA:

premicroRNA

PIV:

para-influenza virus

MDCK:

Madin–Darby canine kidney

pSiNPs:

porous silicon nanoparticles

SLNs:

Solid lipid nanoparticles

NLCs:

Nanostructured lipid carrier

LDCs:

Lipid drug conjugates

CNE:

a cationic nanoemulsion

DOPE:

dioleoylphosphatidylethanolamine

FDA:

Food and Drug Administration

PEI:

polyethyleneimine

EPM:

Exosome and polyethylenimine Matrix

MERS-CoV:

Middle East Respiratory Coronavirus

SARS-CoV-1:

severe acute respiratory syndrome coronavirus 1

sLNPs:

stealth-based lipid nanoparticles

shRNAs:

short hairpin RNA

NP:

Nucleoprotein

References

  1. Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomed Nanotechnol Biol Med. [Internet]. 2009 5(1):8–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1549963408000828

  2. Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Nano Lett. [Internet]. 2018 18(6):3814–3822. Available from: https://doi.org/10.1021/acs.nanolett.8b01101

  3. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Gen. 2022 23(5):265-280. Available from: https://www.nature.com/articles/s41576-021-00439-4

  4. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017 35(3):222-229. Available from: https://www.nature.com/articles/nbt.3802

  5. Kokkinos J, Ignacio RM, Sharbeen G, Boyer C, Gonzales-Aloy E, Goldstein D, McCarroll JA, Phillips PA, Australian Pancreatic Cancer Genome Initiative. Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs. Biomaterials. 2020 1;240:119742. Available from: https://pubmed.ncbi.nlm.nih.gov/32088410/

  6. Lee J-M, Yoon T-J, Cho Y-S. Recent Developments in Nanoparticle-Based siRNA Delivery for Cancer Therapy. Biomed Res Int. [Internet]. 2013;2013:1–10. Available from: http://www.hindawi.com/journals/bmri/2013/782041/

  7. Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR. Progress in natural compounds/siRNA co-delivery employing nanovehicles for cancer therapy. ACS Combinatorial Sci. 2020;22(12):669–700.

    Article  CAS  Google Scholar 

  8. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. [Internet]. 2020 19;5(1):101. Available from: http://www.nature.com/articles/s41392-020-0207-x

  9. Ding S-W, Han Q, Wang J, Li W-X. Antiviral RNA interference in mammals. Curr Opin Immunol. [Internet]. 2018 54:109–114. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0952791518300803

  10. Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, et al. A review: Mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol. [Internet]. 2021 16;35:205873842110026. Available from: https://doi.org/10.1177/20587384211002621

  11. Richman DD, Nathanson N. Antiviral Therapy. In: Viral Pathogenesis [Internet]. Elsevier; 2016. p. 271–287. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128009642000203

  12. Gonçalves BC, Lopes Barbosa MG, Silva Olak AP, Belebecha Terezo N, Nishi L, Watanabe MA, et al. Antiviral therapies: advances and perspectives. Fundam Clin Pharmacol. [Internet]. 2021 8;35(2):305–320. Available from: https://doi.org/10.1111/fcp.12609

  13. Morris KV, Rossi JJ. Antiviral Applications of RNAi. In 2006. p. 105–16. Available from: https://doi.org/10.1007/3-540-27262-3_6

  14. Levanova A, Poranen MM. RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Front Microbiol. [Internet]. 2018 Sep 11;9. Available from: https://doi.org/10.3389/fmicb.2018.02151/full

  15. Torrecilla J, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Lipid Nanoparticles as Carriers for RNAi against Viral Infections: Current Status and Future Perspectives. Biomed Res Int. [Internet]. 2014;2014:1–17. Available from: http://www.hindawi.com/journals/bmri/2014/161794/

  16. Kanda T, Steele R, Ray R, Ray RB. Small Interfering RNA Targeted to Hepatitis C Virus 5′ NontranslatedRegion Exerts Potent Antiviral Effect. J Virol. [Internet]. 2007 81(2):669–676. Available from: https://doi.org/10.1128/JVI.01496-06

  17. Takigawa Y, Nagano-Fujii M, Deng L, Hidajat R, Tanaka M, Mizuta H, et al. Suppression of Hepatitis C Virus Replicon by RNA Interference Directed against the NS3 and NS5B Regions of the Viral Genome. Microbiol Immunol. [Internet]. 2004 48(8):591–598. Available from: https://doi.org/10.1111/j.1348-0421.2004.tb03556.x

  18. Watanabe T, Umehara T, Yasui F, Nakagawa S, Yano J, Ohgi T, et al. Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. J Hepatol. [Internet]. 2007 47(6):744–750. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827807004011

  19. Kim SI, Shin D, Lee H, Ahn B-Y, Yoon Y, Kim M. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J Hepatol. [Internet]. 2009 50(3):479–488. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827808008003

  20. Lee H, Kim SI, Shin D, Yoon Y, Choi TH, Cheon G-J, et al. Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem Biophys Res Commun. [Internet]. 2009 378(2):192–196. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X08021797

  21. Chandra PK, Kundu AK, Hazari S, Chandra S, Bao L, Ooms T, et al. Inhibition of Hepatitis C Virus Replication by Intracellular Delivery of Multiple siRNAs by Nanosomes. Mol Ther. [Internet]. 2012 20(9):1724–1736. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616321633

  22. Wooddell CI, Rozema DB, Hossbach M, John M, Hamilton HL, Chu Q, et al. Hepatocyte-targeted RNAi Therapeutics for the Treatment of Chronic Hepatitis B Virus Infection. Mol Ther. [Internet]. 2013 21(5):973–985. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616306773

  23. Zoulim F. Hepatitis B virus resistance to antiviral drugs: where are we going? Liver Int. [Internet]. 2011 31:111–116. Available from: https://doi.org/10.1111/j.1478-3231.2010.02399.x

  24. Morrissey D V, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. [Internet]. 2005 23(8):1002–1007. Available from: http://www.nature.com/articles/nbt1122

  25. Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, et al. Controlling HBV Replication in Vivo by Intravenous Administration of Triggered PEGylated siRNA-Nanoparticles. Mol Pharm. [Internet]. 2009 6(3):706–717. Available from: https://doi.org/10.1021/mp800157x

  26. Mével M, Kamaly N, Carmona S, Oliver MH, Jorgensen MR, Crowther C, et al. DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Rel. [Internet]. 2010 143(2):222–232. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365909008244

  27. Hean J, Crowther C, Ely A, ul Islam R, Barichievy S, Bloom K, et al. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artif DNA PNA XNA [Internet]. 2010 1(1):17–26. Available from: https://doi.org/10.4161/adna.1.1.11981

  28. Lee NS, Dohjima T, Bauer G, Li H, Li M-J, Ehsani A, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. [Internet]. 2002 20(5):500–505. Available from: http://www.nature.com/articles/nbt0502-500

  29. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao S-H, et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci. [Internet]. 2007 104(32):13110–13115. Available from: https://doi.org/10.1073/pnas.0705474104

  30. Arias MA, Loxley A, Eatmon C, Van Roey G, Fairhurst D, Mitchnick M, et al. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine [Internet]. 2011 29(6):1258–1269. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X10017287

  31. Patel J, Galey D, Jones J, Ray P, Woodward J, Nath A, et al. HIV-1 Tat-coated nanoparticles result in enhanced humoral immune responses and neutralizing antibodies compared to alum adjuvant. Vaccine [Internet]. 2006 24(17):3564–3573. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X06001290

  32. Cui Z, Patel J, Tuzova M, Ray P, Phillips R, Woodward JG, et al. Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine [Internet]. 2004 22(20):2631–2640. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X04000027

  33. Artiga A, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B. 2019;7(6):876-896. Available from: https://pubs.rsc.org/en/content/articlelanding/2019/TB/C8TB02484G

  34. Paul AM, Shi Y, Acharya D, Douglas JR, Cooley A, Anderson JF, et al. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J Gen Virol. [Internet]. 2014 95(8):1712–1722. Available from: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.066084-0

  35. Boden D. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. [Internet]. 2004 32(3):1154–1158. Available from: https://doi.org/10.1093/nar/gkh278

  36. Huang Y, Zheng S, Guo Z, de Mollerat du Jeu X, Liang XJ, Yang Z, Zhang HY, Gao S, Liang Z. Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B. Signal Transduct Target Ther. 2022 11;7(1):38. Available from: https://doi.org/10.1038/s41392-021-00859-y

  37. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, et al. Fully 2‘-Modified Oligonucleotide Duplexes with Improved in Vitro Potency and Stability Compared to Unmodified Small Interfering RNA. J Med Chem. [Internet]. 2005 48(4):901–904. Available from: https://doi.org/10.1021/jm049167j

  38. Chen Y, Cheng G, Mahato RI. RNAi for Treating Hepatitis B Viral Infection. Pharm Res. [Internet]. 2008 25(1):72–86. Available from: https://doi.org/10.1007/s11095-007-9504-0

  39. Mahato RI, Rolland A, Tomlinson E. No Title. Pharm Res. [Internet]. 1997;14(7):853–859. Available from: https://doi.org/10.1023/A:1012187414126

  40. Mahato RI, Smith LC, Rolland A. Pharmaceutical Perspectives of Nonviral Gene Therapy. In 1999. p. 95–156. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065266008601522

  41. Han S, Mahato RI, Sung YK, Kim SW. Development of Biomaterials for Gene Therapy. Mol Ther. [Internet]. 2000 2(4):302–317. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001600901424

  42. Gao H, Cheng R, Santos A. H. Nanoparticle-mediated siRNA delivery systems for cancer therapy. VIEW [Internet]. 2021 11;2(3):20200111. Available from: https://doi.org/10.1002/VIW.20200111

  43. Santos HA, Mäkilä E, Airaksinen AJ, Bimbo LM, Hirvonen J. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomed.[Internet]. 2014 9(4):535–554. Available from: https://doi.org/10.2217/nnm.13.223

  44. Roberts TC, Ezzat K, Andaloussi ELS, Weinberg MS. Synthetic SiRNA Delivery: Progress and Prospects. In 2016. p. 291–310. Available from: https://doi.org/10.1007/978-1-4939-3112-5_23

  45. Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in Antiviral Therapy. In: Antimicrobial Nanoarchitectonics [Internet]. Elsevier; 2017. p. 383–410. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323527330000148

  46. Lembo D, Cavalli R. Nanoparticulate Delivery Systems for Antiviral Drugs. Antivir Chem Chemother. [Internet]. 2010 1;21(2):53–70. Available from: https://doi.org/10.3851/IMP1684

  47. Pan Q, Henry SD, Metselaar HJ, Scholte B, Kwekkeboom J, Tilanus HW, et al. Combined antiviral activity of interferon-α and RNA interference directed against hepatitis C without affecting vector delivery and gene silencing. J Mol Med. [Internet]. 2009 87(7):713–722. Available from: https://doi.org/10.1007/s00109-009-0470-3

  48. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. [Internet]. 2002 54:S131–S155. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X02001187

  49. Delgado D, del Pozo-Rodríguez A, Solinís MÁ, Avilés-Triqueros M, Weber BHF, Fernández E, et al. Dextran and Protamine-Based Solid Lipid Nanoparticles as Potential Vectors for the Treatment of X-Linked Juvenile Retinoschisis. Hum Gene Ther. [Internet]. 2012 23(4):345–355. Available from: https://doi.org/10.1089/hum.2011.115

  50. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target [Internet]. 2012 20(10):813–830. Available from: https://doi.org/10.3109/1061186X.2012.716845

  51. Irby D, Du C, Li F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol Pharm. [Internet]. 2017 14(5):1325–1338. Available from: https://doi.org/10.1021/acs.molpharmaceut.6b01027

  52. Ding Y, Nielsen KA, Nielsen BP, Bøje NW, Müller RH, Pyo SM. Lipid-drug-conjugate (LDC) solid lipid nanoparticles (SLN) for the delivery of nicotine to the oral cavity – Optimization of nicotine loading efficiency. Eur J Pharm Biopharm. [Internet]. 2018 128:10–17. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641117312237

  53. Banerjee S, Kundu A. Lipid-drug conjugates: a potential nanocarrier system for oral drug delivery applications. DARU J Pharm Sci.. 2018 26:65-75. Available from: https://doi.org/10.1007/s40199-018-0209-1

  54. Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmac. [Internet]. 2020 13(10):294. Available from: https://www.mdpi.com/1424-8247/13/10/294

  55. Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. [Internet]. 2012 85(2):187–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22737048

  56. Zhou J, Shum K-T, Burnett J, Rossi J. Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges. Pharm. [Internet]. 2013 6(1):85–107. Available from: http://www.mdpi.com/1424-8247/6/1/85

  57. Ma Y. RNA interference and antiviral therapy. World J Gastroenterol [Internet]. 2007;13(39):5169. Available from: http://www.wjgnet.com/1007-9327/13/5169.asp

  58. Bhavsar D, Subramanian K, Sethuraman S, Krishnan U. Translational siRNA Therapeutics Using Liposomal Carriers: Prospects & Challenges. Curr Gene Ther. [Internet]. 2012 12(4):315–332. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1566-5232&volume=12&issue=4&spage=315

  59. Tseu GY, Kamaruzaman KA. A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules. 2023 3;28(3):1498. Available from: https://doi.org/10.3390/molecules28031498

  60. Xie FY, Woodle MC, Lu PY. Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today [Internet]. 2006 11(1–2):67–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644605036688

  61. Song E, Zhu P, Lee S-K, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. [Internet]. 2005 23(6):709–717. Available from: http://www.nature.com/articles/nbt1101

  62. Wallen M, Aqil F, Kandimalla R, Jeyabalan J, Auwardt S, Tyagi N, Schultz DJ, Spencer W, Gupta RC. A Model System for Antiviral siRNA Therapeutics using Exosome-Based Delivery. Molecular Therapy-Nucleic Acids. 2022

  63. Morris K V, Rossi JJ. Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther. [Internet]. 2006 13(6):553–558. Available from: http://www.nature.com/articles/3302688

  64. Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol. [Internet]. 2018 28(4):e1976. Available from: https://doi.org/10.1002/rmv.1976

  65. Yeung ML, Bennasser Y, Le SY, Jeang KT. siRNA, miRNA and HIV: promises and challenges. Cell Res. [Internet]. 2005 15(11–12):935–946. Available from: http://www.nature.com/articles/7290371

  66. Asha K, Kumar P, Sanicas M, Meseko C, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med. [Internet]. 2018 8(1):6. Available from: http://www.mdpi.com/2077-0383/8/1/6

  67. Idris A, Davis A, Supramaniam A, Acharya D, Kelly G, Tayyar Y, et al. A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Mol Ther. [Internet]. 2021 29(7):2219–2226. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001621002562

  68. Wu C-J, Chan Y-L. Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs. [Internet]. 2006 15(2):89–97. Available from: https://doi.org/10.1517/13543784.15.2.89

  69. Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. [Internet]. 2020 181(4):914-921.e10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420304062

  70. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. [Internet]. 2020 15(4):313–320. Available from: http://www.nature.com/articles/s41565-020-0669-6

  71. Nagata N, Iwata N, Hasegawa H, Fukushi S, Harashima A, Sato Y, et al. Mouse-Passaged Severe Acute Respiratory Syndrome-Associated Coronavirus Leads to Lethal Pulmonary Edema and Diffuse Alveolar Damage in Adult but Not Young Mice. Am J Pathol. [Internet]. 2008 172(6):1625–1637. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002944010619219

  72. Moreau GB, Burgess SL, Sturek JM, Donlan AN, Petri WA, Mann BJ. Evaluation of K18-hACE2 Mice as a Model of SARS-CoV-2 Infection. Am J Trop Med Hyg. [Internet]. 2020 103(3):1215–1219. Available from: https://doi.org/10.4269/ajtmh.20-0762

  73. By V, Designed S, Rna SI. (12) United States Patent. Vol. 2. US; US 7,199,109 B2, 2007. https://patents.google.com/patent/US7199109B2/en?oq=Vol.+2%2c+US+7%2c199%2c109+B2

  74. Sekhar BC. Patent Application Publication ( 10 ) Pub . No .: US 2007 / 0197807 A1. Vol. 1, Us 2007 / 0197807 a1. US; US 2007/0213293 A1, 2007. p. 19–21. https://patentimages.storage.googleapis.com/ed/89/06/f88e36cc1966c7/US20070213293A1.pdf

  75. Osann R, Fasching MM. (12) Patent Application Publication (10) Pub . No .: US 2008 / 0225123 A1 Patent Application Publication. Vol. 1, Privateaccess Point Containinga Sm Card. US 2008/027992.0 A1, 2008. p. 11–4. https://patentimages.storage.googleapis.com/c1/c4/9c/918cfd331cdb89/US20080279920A1.pdf

  76. Examiner P, Stucker J. (12) United States Patent. Vol. 2. US 7,067.249 B2, 2006. In: Kung HF, & He ML (editors). Inhibition of hepatitis B virus (HBV) replication by RNA interference. U.S. Patent No. 7,067,249. Assigned to University of Hong Kong HKU. 2006. Retrieved from https://patents.google.com/patent/US7067249B2/en

  77. Kim M, Shin D, Mahnhoon P. WO2006129961A1.pdf. WO2006129961A1. In: Kim M, Shin D, Park M, Kim SI (editors). Small interfering RNA specific for HCV and therapeutic agent for hepatitis C comprising the same. WIPO Patent No. WO 2006129961 A1. World Intellectual Property Organization. 2006. Retrieved from https://patents.google.com/patent/WO2006129961A1/en

  78. Hoffmeyer IA, De C, Boer R, De C, De G, De J, et al. ( 12 ) United States Patent ( 10 ) Patent No .: Vol. 2. US 7,195,916 B2, 2016. In: Qin XF, Baltimore D. Method for expression of small antiviral RNA molecules within a cell. U.S. Patent No. 7,195,916. Assigned to California Institute of Technology CalTech & University of California, 2007. Retrieved from https://patents.google.com/patent/US7195916B2/en

  79. Hope COF. (12) Patent Application Publication (10) Pub. No.: US 2011/0318838A1. Vol. 1. US 2011/0318838A1, 2011. In: Rossi JJ, Zhou J (editors). Cell-type specific aptamer-siRNA delivery system for HIV-1 therapy. U.S. Patent Application Publication No. US 2011/0318838 A1. Assigned to City of Hope, 2021. Retrieved from https://patents.google.com/patent/US20110318838A1/en

  80. Libermann, Judy, Pallisher, Deborah, Knipe D. WO2006133099A3.pdf. WO2006133099A3, 2006. In: Lieberman J, Palliser D, Knipe D. SiRNA microbicides for preventing and treating viral diseases. WIPO Patent No. WO 2006133099 A3. Assigned to Cbr Institute for Biomedical Research Inc., Harvard College, Judy Lieberman, Deborah Palliser, David Knipe; 2007. Retrieved from https://patents.google.com/patent/WO2006133099A3/en

  81. Mohapatra S, Weidong Z. WO2005056021A1.pdf. WO2005056021A1. In: Mohapatra SS, Zhang,W (editors). Polynucleotides for reducing respiratory syncytial virus gene expression. WIPO Patent No. WO 2005056021 A1. Assigned to University of South Florida; 2005. Retrieved from https://patents.google.com/patent/WO2005056021A1/en

  82. Vargeese C, Mcswiggen J, Francisco S, Data RUSA. (12) Patent Application Publication (10) Pub. No.: US 2006/0287267 A1. Vol. 1. US 2006/0287267 A1, 2006. In: Vaish N, Vargeese C, McSwiggen J (editors). RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA). U.S. Patent Application Publication No. US 2006/0287267 A1. Assigned to Sirna Therapeutics Inc; 2006. Retrieved from https://patents.google.com/patent/US20060287267A1/en

  83. Mcswiggen, James, Bharat, Chowira, Haeberli P. WO2004092383A3.pdf. WO2004092383A3. In: Mcswiggen J, Bharat C, Haeberli P (editors). Short interfering RNA molecules for inhibition of respiratory syncytial virus replication. WIPO Patent No. WO 2004092383 A3. Assigned to Sirna Therapeutics Inc, James Mcswiggen, Chowira Bharat, Peter Haeberli, 2004. Retrieved from https://patents.google.com/patent/WO2004092383A3/en

  84. Sekhar BC. Patent Application Publication ( 10 ) Pub . No .: US 2007 / 0197807 A1. Vol. 1, Us 2007 / 0197807 a1. US; US 2007/0203082 A1, 2007. p. 19–21. https://patentimages.storage.googleapis.com/6a/4f/82/630235dda9e8a9/US20070203082A1.pdf

  85. Burnett JC, Rossi JJ, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. [Internet]. 2011 6(9):1130–1146. Available from: https://doi.org/10.1002/biot.201100054

  86. Yuen M, Schiefke I, Yoon J, Ahn SH, Heo J, Kim JH, et al. RNA Interference Therapy With ARC-520 Results in Prolonged Hepatitis B Surface Antigen Response in Patients With Chronic Hepatitis B Infection. Hepatol. [Internet]. 2020 72(1):19–31. Available from: https://doi.org/10.1002/hep.31008

  87. van den Berg F, Limani EA, Savin AM, Kolpashchikov DM. Bifunctional RNA-Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chem – A Eur J. [Internet]. 2020 26(16):3489–3493. Available from: https://doi.org/10.1002/chem.201905528

  88. van den Berg F, Limani SW, Mnyandu N, Maepa MB, Ely A, Arbuthnot P. Advances with RNAi-Based Therapy for Hepatitis B Virus Infection. Virus. [Internet]. 2020 12(8):851. Available from: https://www.mdpi.com/1999-4915/12/8/851

  89. Mak L-Y, Seto W-K, Yuen M-F. Future Therapies for Functional Cure of Chronic HBV: Review of Investigational Drugs in Phase 1 and 2 Development. Curr Hepatol Rep. [Internet]. 2019 18(4):503–511. Available from: https://doi.org/10.1007/s11901-019-00494-w

  90. Gish RG, Yuen M-F, Chan HLY, Given BD, Lai C-L, Locarnini SA, et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent. Antiviral Res. [Internet]. 2015 121:97–108. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166354215001503

  91. In this issue. J Gene Med. [Internet]. 2002 Jul;4(4):345–6. Available from: https://doi.org/10.1002/jgm.309

  92. Anglero-Rodriguez Y, Lempp F, Liebow A, Nguyen T, LeBlanc S, Kaittanis C, et al. In vitro and in vivo characterization of VIR-2218, an investigational RNAi therapeutic targeting hepatitis B virus. J Hepatol. [Internet]. 2020 73:S865. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827820321735

  93. Wooddell C, Zhu R, Hamilton H, Chu Q, Sternard H, Schumacher J, et al. Development of subcutaneously administered RNAi therapeutic ARO-HBV for chronic hepatitis B virus infection. J Hepatol. [Internet]. 2018 68:S18–S19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827818302551

  94. Berger KL, Randall G. Possibilities for RNA Interference in Developing Hepatitis C Virus Therapeutics. Virus. [Internet]. 2010 2(8):1647–1665. Available from: http://www.mdpi.com/1999-4915/2/8/1647

  95. Patel K, Kilfoil G, Wyles DL, Naggie S, Lawitz E, Bradley S, et al. 258. Phase I/IIa Study of TT-034, a DNA-Directed RNA Interference (ddRNAi) Agent Delivered as a Single Administration for the Treatment of Subjects with Chronic Hepatitis C Virus (HCV). Mol Ther [Internet]. 2016 May;24:S102. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616330672

  96. Borgia G, Maraolo AE, Buonomo AR, Scotto R, Gentile I. The therapeutic potential of new investigational hepatitis C virus translation inhibitors. Expert Opin Investig Drugs [Internet]. 2016 2;25(10):1209–1214. Available from: https://doi.org/10.1080/13543784.2016.1225036

  97. Spelkov AA, Goncharova EA, Savin AM, Kolpashchikov DM. Bifunctional RNA-Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chem – A Eur J. [Internet]. 2020 26(16):3489–3493. Available from: https://doi.org/10.1002/chem.201905528

  98. Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, et al. ALN- RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Hear Lung Transplant. [Internet]. 2016 35(2):213–221. Available from: https://linkinghub.elsevier.com/retrieve/pii/S105324981501387X

  99. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med [Internet]. 2005 11(1):50–55. Available from: http://www.nature.com/articles/nm1164

  100. Chen S-H, Zhaori G. Potential clinical applications of siRNA technique: benefits and limitations. Eur J Clin Invest. [Internet]. 2011 41(2):221–232. Available from: https://doi.org/10.1111/j.1365-2362.2010.02400.x

  101. Wolstein O, Boyd M, Millington M, Impey H, Boyer J, Howe A, et al. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. Mol Ther - Methods Clin Dev. [Internet]. 2014;1:11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2329050116300663

  102. Lee C-L, Burke B, Bartlett J. Development and Characterization of GPRG-Based Producer Cell Lines for the Bioproduction of Lentiviral Vectors for HIV Gene Therapy. Mol Ther. [Internet]. 2015 23:S186. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616340783. Accessed 15 Jan 2023

  103. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The Challenge of Finding a Cure for HIV Infection. Sci (80) [Internet]. 2009 323(5919):1304–1307. Available from: https://doi.org/10.1126/science.1165706

  104. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, et al. RNA-Based Gene Therapy for HIV with Lentiviral Vector-Modified CD34+ Cells in Patients Undergoing Transplantation for AIDS-Related Lymphoma. Sci Transl Med. [Internet]. 2010 2(36):36ra43-36ra43. Available from: https://doi.org/10.1126/scitranslmed.3000931

  105. Scott JT, Sharma R, Meredith LW, Dunning J, Moore CE, Sahr F, et al. Pharmacokinetics of TKM-130803 in Sierra Leonean patients with Ebola virus disease: plasma concentrations exceed target levels, with drug accumulation in the most severe patients. EBioMed. [Internet]. 2020 52:102601. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352396419308163

  106. Cardile AP, Downey LG, Wiseman PD, Warren TK, Bavari S. Antiviral therapeutics for the treatment of Ebola virus infection. Curr Opin Pharmacol. [Internet]. 2016 30:138–143. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1471489216301059

  107. Dunning J, Sahr F, Rojek A, Gannon F, Carson G, Idriss B, et al. Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial. von Seidlein L, editor. Plos Med. [Internet]. 2016 19;13(4):e1001997. Available from: https://doi.org/10.1371/journal.pmed.1001997

  108. Lee JS, Adhikari NKJ, Kwon HY, Teo K, Siemieniuk R, Lamontagne F, et al. Anti-Ebola therapy for patients with Ebola virus disease: a systematic review. BMC Infect Dis. [Internet]. 2019 2;19(1):376. Available from: https://doi.org/10.1186/s12879-019-3980-9

  109. Sissoko D, Laouenan C, Folkesson E, M’Lebing A-B, Beavogui A-H, Baize S, et al. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. Lipsitch M, editor. Plos Med. [Internet]. 2016 1;13(3):e1001967. Available from: https://doi.org/10.1371/journal.pmed.1001967

  110. Guedj J, Piorkowski G, Jacquot F, Madelain V, Nguyen THT, Rodallec A, et al. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. Boyles T, editor. Plos Med. [Internet]. 2018 27;15(3):e1002535. Available from: https://doi.org/10.1371/journal.pmed.1002535

  111. Morgan RG, Chambers AC, Legge DN, Coles SJ, Greenhough A, Williams AC. Optimized delivery of siRNA into 3D tumor spheroid cultures in situ. Sci Rep. [Internet]. 2018 8(1):7952. Available from: http://www.nature.com/articles/s41598-018-26253-3

  112. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. [Internet]. 2017 5;4(4):105–131. Available from: https://doi.org/10.1177/2049936117713593

  113. Li Z, Duan F, Lin L, Huang Q, Wu K. A New Approach of Delivering siRNA to the Cornea and its Application for Inhibiting Herpes Simplex Keratitis. Curr Mol Med. [Internet]. 2014 14(9):1215–1225. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1566-5240&volume=14&issue=9&spage=1215

  114. Khanna M, Saxena L, Rajput R, Kumar B, Prasad R. Gene silencing: a therapeutic approach to combat influenza virus infections. Future Microbiol. [Internet]. 2015 10(1):131–140. Available from: https://doi.org/10.2217/fmb.14.94

  115. McSwiggen JA, Seth S. A potential treatment for pandemic influenza using siRNAs targeting conserved regions of influenza A. Expert Opin Biol Ther. [Internet]. 2008 8(3):299–313. Available from: https://doi.org/10.1517/14712598.8.3.299

  116. Moreno-Montañés J, Bleau A-M, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs [Internet]. 2018 3;27(4):421–426. Available from: https://doi.org/10.1080/13543784.2018.1457647

  117. Bleau A-M, Ruz V, González V, Martínez T, Vargas B, Jimenez AI. Development of tivanisiran, a topical siRNA designed to treat dry eye disease. Integr Clin Med. [Internet]. 2018;2(2). Available from: http://www.oatext.com/development-of-tivanisiran-a-topical-sirna-designed-to-treat-dry-eye-disease.php

  118. Wang Z, Ren L, Zhao X, Hung T, Meng A, Wang J, et al. Inhibition of Severe Acute Respiratory Syndrome Virus Replication by Small Interfering RNAs in Mammalian Cells. J Virol. [Internet]. 2004 78(14):7523–7527. Available from: https://doi.org/10.1128/JVI.78.14.7523-7527.2004

  119. Tan P-H, Yang L-C, Ji R-R. Therapeutic Potential of RNA Interference in Pain Medicine. Open Pain J. [Internet]. 2009 2(1):57–63. Available from: http://benthamopen.com/ABSTRACT/TOPAINJ-2-57

  120. Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs. 2022 36(5):549-571. Available from: https://doi.org/10.1007/s40259-022-00549-3

Download references

Acknowledgements

The authors are grateful to Rashtriya Uchchatar Sikshan Abhiyan (RUSA), Ministry of Education, Government of India, Rajasthan State Higher Education Council (RSHEC) and State Project Directorate (RUSA) for financial support to carry out research on “Design, development and characterization of oral nano-formulations for treatment of cancer” (F/RUSA/MLSU/2020/6379) to Dr. Garima Joshi as Principal Investigator, Dr. Deepak Choudhary as Co-PI and Sheikh Shahnawaz Quadir as Junior Research Fellow (Grant no F30 [16]/SPD/RUSA/2016/178).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization Dr. Deepak Choudhary: supervision Dr. Sanjay Sharma; writing original draft: Krittika Chatterjee and Sagheerah Lakdawala; writing revision: Sheikh Shahnawaz Quadir; visualization and editing: Dr. Dinesh Kumar Mishra; extensive revision editing: Dr. Garima Joshi; data writing-review: Dinesh Puri.

Corresponding authors

Correspondence to Sanjay Sharma or Deepak Choudhary.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Responsible Editor: Claudio Salomon

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, K., Lakdawala, S., Quadir, S.S. et al. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 24, 170 (2023). https://doi.org/10.1208/s12249-023-02629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02629-1

Keywords

Navigation