Skip to main content

Advertisement

Log in

Towards Formulation of Highly Acidic Active Ingredients: Development of Clinically Effective Concentrated Trichloroacetic Acid Gel for Wart Management

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Common warts are benign skin lesions caused by the human papillomavirus. Although they are usually not harmful, they can cause pain, depending on their location. While many modalities are available for treatment of warts, none is a gold standard, and many are not affordable and/or have suboptimal outcomes. Trichloroacetic acid (TCA) is a chemical tissue-destroying agent used as a highly concentrated solution for wart management. While available and efficient, it is difficult to handle as the solution spreads to tissue surrounding the wart causing pain and burning. Hence, we developed a new polymer-based gel of high TCA content (100% w/v). Gels were formed successfully as hydroxyethyl cellulose (HEC) and chitosan were used to impart viscosity and bioadhesion. Formulae of different concentrations were tested for their physical properties, and the optimal formulation was selected for clinical evaluation. A combination of 3% HEC and 2% chitosan provided optimal viscosity and limited water content and have acceptable stability. The efficacy and safety of the biweekly application of TCA gel were evaluated in 30 patients. The clinical study revealed gel’s efficacy and tolerability; half of the patients showed a complete cure, and 90% showed improvement within 6 weeks. Only 10–12% of the patients reported side effects. In summary, transforming TCA solution into a gel enabled its application and handling in a practical manner by physicians and patients alike, while maintaining its efficacy as a tissue-destroying agent. Moreover, it is economic and easy to apply, rendering it a promising formulation for similar conditions requiring controlled tissue ablation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sterling JC, Gibbs S, Haque Hussain SS, Mohd Mustapa MF, Handfield-Jones SE. British Association of Dermatologists’ guidelines for the management of cutaneous warts 2014. Br J Dermatol. 2014;171(4):696–712. https://doi.org/10.1111/bjd.13310.

    Article  CAS  PubMed  Google Scholar 

  2. Ting Y, Manos MM. Detection and typing of genital human papillomaviruses. New York: Academic; 1990.

    Book  Google Scholar 

  3. Mattei P, Nichol PF, Rollins I, Muratore CS. Fundamentals of pediatric surgery. Springer; 2017.

  4. Abdel Meguid AM, Abdel Motaleb AA, Abdel Sadek AMI. Cryotherapy vs trichloroacetic acid 90% in treatment of common warts. J Cosmet Dermatol. 2019;18(2):608–13. https://doi.org/10.1111/jocd.12805.

    Article  PubMed  Google Scholar 

  5. El-Mohamady AE-S, Mearag I, El-Khalawany M, Elshahed A, Shokeir H, Mahmoud A. Pulsed dye laser versus Nd:YAG laser in the treatment of plantar warts: a comparative study. Lasers Med Sci. 2014;29(3):1111–6. https://doi.org/10.1007/s10103-013-1479-y.

  6. Mulhem E, Pinelis S. Treatment of nongenital cutaneous warts. Am Fam Physician. 2011;84(3):288–93.

    PubMed  Google Scholar 

  7. Cockayne S, Hewitt C, Hicks K, Jayakody S, Kang’ombe AR, Stamuli E, et al. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial. BMJ. 2011;342:d3271. https://doi.org/10.1136/bmj.d3271.

  8. Lipke MM. An armamentarium of wart treatments. Clin Med Res. 2006;4(4):273–93. https://doi.org/10.3121/cmr.4.4.273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. PubChem, 2022. https://pubchem.ncbi.nlm.nih.gov/compound/Trichloroacetic-acid. Accessed 3 July 2022.

  10. Nguyen AT, Ahmad J, Fagien S, Rohrich RJ. Cosmetic medicine: facial resurfacing and injectables. Plast Reconstr Surg. 2012;129(1):142e–53e. https://doi.org/10.1097/PRS.0b013e3182362c63.

  11. Small R, O’Hanlon K. 22 - Chemical peels. In: Usatine RP, Pfenninger JL, Stulberg DL, Small R, editors. Dermatologic and cosmetic procedures in office practice. Philadelphia: W.B. Saunders; 2012. p. 259–73.

    Chapter  Google Scholar 

  12. Abdellah MS, Elsaman AM. Trichloroacetic acid for the treatment of dysfunctional uterine bleeding: a pilot prospective clinical trial. Eur J Obstet Gynecol Reprod Biol. 2012;165(2):280–3. https://doi.org/10.1016/j.ejogrb.2012.07.003.

    Article  CAS  PubMed  Google Scholar 

  13. Kopera D, Holubar K. Trichloroacetic acid in dermatology of 1911. Int J Dermatol. 1998;37(3):205.

    CAS  PubMed  Google Scholar 

  14. Pezeshkpoor F, Banihashemi M, Yazdanpanah MJ, Yousefzadeh H, Sharghi M, Hoseinzadeh H. Comparative study of topical 80% trichloroacetic acid with 35% trichloroacetic acid in the treatment of the common wart. J Drugs Dermatol. 2012;11(11):e66–9.

    PubMed  Google Scholar 

  15. Bodar P, Agarwal P, Saikia S, Dalal T, Jagati A. Evaluating the efficacy of 100% trichloroacetic acid needling in the treatment of palmoplantar warts. Indian J Drugs Dermatol. 2020;6(1):13–6. https://doi.org/10.4103/ijdd.ijdd_38_19.

    Article  Google Scholar 

  16. Baker GE, Tyring SK. Therapeutic approaches to papillomavirus infections. Dermatol Clin. 1997;15(2):331–40. https://doi.org/10.1016/s0733-8635(05)70441-1.

    Article  CAS  PubMed  Google Scholar 

  17. Zanini M. Trichloroacetic acid gel-a new method for an old acid. Med Cutan Ibero Lat Am. 2007;35(1):14–7.

    Google Scholar 

  18. Hendriks M, Bouter P, Kolodziek K. Composition for the treatment of skin and/or nail lesions. EP2407151B1(Patent) 2012.

  19. Wedmore I, McManus JG, Pusateri AE, Holcomb JB. A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma. 2006;60(3):655–8. https://doi.org/10.1097/01.ta.0000199392.91772.44.

    Article  PubMed  Google Scholar 

  20. El Fawal G, Hong H, Song X, Wu J, Sun M, He C, et al. Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag Shelf Life. 2020;23:100462. https://doi.org/10.1016/j.fpsl.2020.100462.

  21. Rao KS, Naidu V, Savitha K. Cryosurgery vs 40 % salicylic acid in treatment of warts. Medica Innovatica. 2014;3(1):65–71.

  22. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396(1):153–66. https://doi.org/10.1016/S0040-6031(02)00523-3.

    Article  CAS  Google Scholar 

  23. Ayouch I, Kassem I, Kassab Z, Barrak I, Barhoun A, Jacquemin J, et al. Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf Interfaces. 2021;24:101124. https://doi.org/10.1016/j.surfin.2021.101124.

  24. Angadi SC, Manjeshwar LS, Aminabhavi TM. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol. 2010;47(2):171–9. https://doi.org/10.1016/j.ijbiomac.2010.05.003.

    Article  CAS  PubMed  Google Scholar 

  25. Lustriane C, Dwivany FM, Suendo V, Reza M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol. 2018;45(1):36–44. https://doi.org/10.5010/JPB.2018.45.1.036.

    Article  Google Scholar 

  26. Gorgieva S, Kokol V. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohyd Polym. 2011;85(3):664–73. https://doi.org/10.1016/j.carbpol.2011.03.037.

    Article  CAS  Google Scholar 

  27. Gelaw TB, Sarojini BK, Kodoth AK. Chitosan/hydroxyethyl cellulose gel immobilized polyaniline/CuO/ZnO adsorptive-photocatalytic hybrid nanocomposite for Congo red removal. J Polym Environ. 2022;30(10):4086–101. https://doi.org/10.1007/s10924-022-02492-4.

    Article  CAS  Google Scholar 

  28. Hezaveh H, Muhamad II. Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. Korean J Chem Eng. 2012;29(11):1647–55. https://doi.org/10.1007/s11814-012-0056-6.

    Article  CAS  Google Scholar 

  29. Strokova NE, Savilov SV, Morozov II, Yagodovskaya TV, Lunin VV. Laboratory simulations of the interaction between ozone and chloroacetic acids in the conditions close to stratospheric. Russ J Phys Chem A. 2015;89(1):28–37. https://doi.org/10.1134/S0036024415010264.

    Article  CAS  Google Scholar 

  30. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071. https://doi.org/10.1038/natrevmats.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abd Ellah NH, Abd El-Aziz FE-ZA, Abouelmagd SA, Abd El-Hamid BN, Hetta HF. Spidroin in carbopol-based gel promotes wound healing in earthworm’s skin model. Drug Dev Res. 2019;80(8):1051–61. https://doi.org/10.1002/ddr.21583.

  32. Helmy AM, Elsabahy M, Soliman GM, Mahmoud MA, Ibrahim EA. Development and in vivo evaluation of chitosan beads for the colonic delivery of azathioprine for treatment of inflammatory bowel disease. Eur J Pharm Sci. 2017;109:269–79. https://doi.org/10.1016/j.ejps.2017.08.025.

    Article  CAS  PubMed  Google Scholar 

  33. Fu J, Yang F, Guo Z. The chitosan hydrogels: from structure to function. New J Chem. 2018;42(21):17162–80. https://doi.org/10.1039/C8NJ03482F.

    Article  CAS  Google Scholar 

  34. Abouelmagd SA, Ku YJ, Yeo Y. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. J Drug Target. 2015;23(7–8):725–35. https://doi.org/10.3109/1061186X.2015.1054829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. da Silva JB, Dos Santos RS, Vecchi CF, Bruschi ML. Drug delivery platforms containing thermoresponsive polymers and mucoadhesive cellulose derivatives: state of the art and review of patents. Recent Adv Drug Deliv Formul. 2022. https://doi.org/10.2174/2667387816666220404123625.

    Article  PubMed  Google Scholar 

  36. Postoy V, Kukhtenko H, Vyshnevska L, Gladukh I, Semchenko K. Study of rheological behaviour of hydroxyethyl cellulose gels in the development of the composition and technology of the medicine with anti-inflammatory activity. Pharmacia. 2019;66(4). https://doi.org/10.3897/pharmacia.66.e37267.

  37. Syed TA, Qureshi ZA, Ahmad SA, Ali SM. Management of intravaginal warts in women with 5-fluorouracil (1%) in vaginal hydrophilic gel: a placebo-controlled double-blind study. Int J STD AIDS. 2000;11(6):371–4. https://doi.org/10.1258/0956462001916074.

    Article  CAS  PubMed  Google Scholar 

  38. Bonatti H, Aigner F, De Clercq E, Boesmueller C, Widschwendner A, Larcher C, et al. Local administration of cidofovir for human papilloma virus associated skin lesions in transplant recipients. Transpl Int. 2007;20(3):238–46. https://doi.org/10.1111/j.1432-2277.2006.00430.x.

    Article  CAS  PubMed  Google Scholar 

  39. Abouhussein D, El Nabarawi MA, Shalaby SH, El-Bary AA. Cetylpyridinium chloride chitosan blended mucoadhesive buccal films for treatment of pediatric oral diseases. J Drug Deliv Sci Technol. 2020;57:101676. https://doi.org/10.1016/j.jddst.2020.101676.

  40. Qian L. Cellulose-based composite hydrogels: preparation, structures, and applications. In: Mondal MIH, editor. Cellulose-based superabsorbent hydrogels. Cham: Springer International Publishing; 2019. p. 655–704.

    Chapter  Google Scholar 

  41. Li J, Xu Z. Physical characterization of a chitosan-based hydrogel delivery system. J Pharm Sci. 2002;91(7):1669–77. https://doi.org/10.1002/jps.10157.

    Article  CAS  PubMed  Google Scholar 

  42. Boufas S, Benhamza MEH, Seghir BB, Hadria F. Synthesis and characterization of chitosan/carrageenan/hydroxyethyl cellulose blended gels. Asian J Res Chem. 2020;13(3):209–15.

    Article  Google Scholar 

  43. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 2016;18(1):53–75. https://doi.org/10.1039/C5GC02396C.

    Article  Google Scholar 

  44. Yan S, Yin J, Tang L, Chen X. Novel physically crosslinked hydrogels of carboxymethyl chitosan and cellulose ethers: structure and controlled drug release behavior. J Appl Polym Sci. 2011;119(4):2350–8. https://doi.org/10.1002/app.32678.

    Article  CAS  Google Scholar 

  45. Muzio G, Massone C, Rebora A. Treatment of non-genital warts with topical imiquimod 5% cream. Eur J Dermatol. 2002;12(4):347–9.

    CAS  PubMed  Google Scholar 

  46. Bhat RM, Vidya K, Kamath G. Topical formic acid puncture technique for the treatment of common warts. Int J Dermatol. 2001;40(6):415–9. https://doi.org/10.1046/j.1365-4362.2001.01242.x.

    Article  CAS  PubMed  Google Scholar 

  47. Hirose R, Hori M, Shukuwa T, Udono M, Yamada M, Koide T, et al. Topical treatment of resistant warts with glutaraldehyde. J Dermatol. 1994;21(4):248–53. https://doi.org/10.1111/j.1346-8138.1994.tb01731.x.

    Article  CAS  PubMed  Google Scholar 

  48. Khaled A, Ben Romdhane S, Kharfi M, Zeglaoui F, Fazaa B, Kamoun MR. Assessment of cryotherapy by liquid nitrogen in the treatment of hand and feet warts. Tunis Med. 2009;87(10):690–2.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M.H and S.A.A. were responsible for formulation, gel evaluation, and data analysis. S.S.A. and H.M.A. were responsible for protocol development, patient enrollment, clinical data collection, and analysis. R.M.E. contributed to clinical data collection and analysis. First draft of the manuscript was written by S.A.A and H.M.A. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hossam M. Abdel-Wahab or Sara A. Abouelmagd.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helmy, A.M., Ahmed, S.S., Sabaa, R.M.E. et al. Towards Formulation of Highly Acidic Active Ingredients: Development of Clinically Effective Concentrated Trichloroacetic Acid Gel for Wart Management. AAPS PharmSciTech 24, 160 (2023). https://doi.org/10.1208/s12249-023-02615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02615-7

Keywords

Navigation