Skip to main content

Advertisement

Log in

Naringenin-Capped Silver Nanoparticles Amalgamated Gel for the Treatment of Cutaneous Candidiasis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The current research was aimed to synthesize a phytomolecule, naringenin (NRG)-mediated silver nanoparticles (NRG-SNPs) to study their antifungal potential against Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The NRG-SNPs were synthesized by using NRG as a reducing agent. The synthesis of NRG-SNPs was confirmed by a color change and surface plasmon resonance (SPR) peak at 425 nm. Furthermore, the NRG-SNPs were analyzed for size, PDI, and zeta potential, which were found to be 35 ± 0.21 nm, 0.19 ± 0.03, and 17.73 ± 0.92 mV, respectively. In silico results demonstrated that NRG had a strong affinity towards the sterol 14α-demethylase. The docking with ceramide revealed the skin permeation efficiency of the NRG-SNPs. Next, the NRG-SNPs were loaded into the topical dermal dosage form (NRG-SNPs-TDDF) by formulating a gel using Carbopol Ultrez 10 NF. The MIC50 of NRG solution and TSC-SNPs against C. albicans was found to be 50 µg/mL and 4.8 µg/mL, respectively, significantly (P < 0.05) higher than 0.3625 µg/mL of NRG-SNPs-TDDF. Correspondingly, MIC50 results were calculated against C. glabrata and the results of NRG, TSC-SNPs, NRG-SNPs-TDDF, and miconazole nitrate were found to be 50 µg/mL, 9.6 µg/mL, 0.3625 µg/mL, and 3-µg/mL, respectively. Interestingly, MIC50 of NRG-SNPs-TDDF was significantly (P < 0.05) lower than MIC50 of miconazole nitrate against C. glabrata. The FICI (fractional inhibitory concentration index) value against both the C. albicans and C. glabrata was found to be 0.016 and 0.011, respectively, which indicated the synergistic antifungal activity of NRG-SNPs-TDDF. Thus, NRG-SNPs-TDDF warrants further in depth in vivo study under a set of stringent parameters for translating in to a clinically viable antifungal product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Taudorf EH, Jemec GBE, Hay RJ, Saunte DML. Cutaneous candidiasis - an evidence-based review of topical and systemic treatments to inform clinical practice. J Eur Acad Dermatol Venereol. 2019;33:1863–73. https://doi.org/10.1111/JDV.15782.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta M, Goyal AK, Paliwal SR, Paliwal R, Mishra N, Dube D, Jain SK, Vyas SP. Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis. J Liposome Res. 2010;20:341–50. https://doi.org/10.3109/08982101003596125.

    Article  CAS  PubMed  Google Scholar 

  3. El-sheridy NA, Ramadan AA, Eid AA, El-khordagui LK. SC, Itraconazole lipid nanocapsules gel for dermatological applications: In vitro characteristics and treatment of induced cutaneous candidiasis. Colloids Surf B Biointerfaces. 2019;181:623–31. https://doi.org/10.1016/j.colsurfb.2019.05.057.

    Article  CAS  PubMed  Google Scholar 

  4. Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharm. 2018;10:26. https://doi.org/10.3390/PHARMACEUTICS10010026.

    Article  Google Scholar 

  5. Chandra R, Madan J, Sharma R. Silver nanoparticles in drug delivery: from bench to bedside. London, United Kingdom: Lambert Academic Publishing; 2018.

    Google Scholar 

  6. Silva LP, Silveira AP, Bonatto C, Reis IG, Milreu PV. Silver nanoparticles as antimicrobial agents: past, present, and future. 2017;10:577–596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3.

  7. Mussin JE, Roldán MV, Rojas F, Sosa MDLÁ, Pellegri N, Giusiano G. Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur. AMB Express. 2019;9:131. https://doi.org/10.1186/s13568-019-0857-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Negri M, Gorup LF, De Camargo ER, Monteiro DR. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses. 2013;56(6):672–80. https://doi.org/10.1111/myc.12093.

    Article  CAS  PubMed  Google Scholar 

  9. Yassin MT, Mostafa AAF, Al-askar AA, Al-otibi FO. Synergistic antifungal efficiency of biogenic silver nanoparticles with itraconazole against multidrug-resistant candidal strains. Cryst. 2022;12:816. https://doi.org/10.3390/CRYST12060816.

    Article  CAS  Google Scholar 

  10. Cui J, Ren B, Tong Y, Dai H, Zhang L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence. 2015;6:362–71. https://doi.org/10.1080/21505594.2015.1039885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Candida D, Sun L, Liao K, Li Y, Zhao L, Liang S, Guo D, Hu J, Wang D. Synergy between polyvinylpyrrolidone-coated silver nanoparticles and azole antifungal against. J Nanosci Nanotechnol. 2016;16:2325–35. https://doi.org/10.1166/jnn.2016.10934.

    Article  CAS  Google Scholar 

  12. Woo KKÆ, Sung S, Kyoung ÆB, Choi SMÆJ, Guk ÆJ. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–42. https://doi.org/10.1007/s10534-008-9159-2.

    Article  CAS  Google Scholar 

  13. Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater. 2020;11:84. https://doi.org/10.3390/jfb11040084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soni N, Jyoti K, Jain UK, Katyal A, Chandra R, Madan J. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells. Biomed Pharmacother. 2017;90:906–13.

    Article  CAS  PubMed  Google Scholar 

  15. Gomes HIO, Martins CSM, Prior JAV, Taglietti M. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials. 2021;11(4):964. https://doi.org/10.3390/nano11040964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mandal D, Kumar Dash S, Das B, Chattopadhyay S, Ghosh T, Das D, Roy S. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomed Pharmacother. 2016;83:548–58. https://doi.org/10.1016/j.biopha.2016.07.011.

    Article  CAS  PubMed  Google Scholar 

  17. Soukupová J, Kvítek L, Panáček A, Nevěčná T, Zbořil R. Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater Chem Phys. 2008;111:77–81. https://doi.org/10.1016/J.MATCHEMPHYS.2008.03.018.

    Article  Google Scholar 

  18. Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, Pandey RA. Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett. 2016;6:173–81. https://doi.org/10.1007/S40089-016-0184-9.

    Article  Google Scholar 

  19. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–702. https://doi.org/10.1039/c8ra08982e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. La Spina R, Mehn D, Fumagalli F, Holland M, Reniero F, Rossi F, Gilliland D. Synthesis of citrate-stabilized silver nanoparticles modified by thermal and ph preconditioned tannic acid. Nanomaterials. 2020;10:2031.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jadhav K, Deore S, Dhamecha D, Rajeshwari RH, Jagwani S, Jalalpure S, Bohara R, Kore P. Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Publ. 2018;4:892–9. https://doi.org/10.1021/acsbiomaterials.7b00707.

    Article  CAS  Google Scholar 

  22. Sahu N, Soni D, Satpute BCDB. Synthesis of silver nanoparticles using flavonoids : hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett. 2016;6:173–81. https://doi.org/10.1007/s40089-016-0184-9.

    Article  Google Scholar 

  23. Taylor P, Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS. Natural products – antifungal agents derived from plants. J Asian Nat Prod Res. 2009;11:621–38. https://doi.org/10.1080/10286020902942350.

    Article  CAS  Google Scholar 

  24. Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Švegelj M, Lamba D, Lanišnik Rižner T. Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: the case of fungal 17β-HSDcl. J Steroid Biochem Mol Biol. 2017;171:80–93. https://doi.org/10.1016/j.jsbmb.2017.02.020.

    Article  CAS  PubMed  Google Scholar 

  25. Sgariglia MA, Luco D, Labadie GR, Pero EJI, Sampietro DA, Fern J. Antifungal activity and toxicity studies of flavanones isolated from Tessaria dodoneifolia aerial parts. Heliyon. 2020;6:e05174. https://doi.org/10.1016/j.heliyon.2020.e05174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schrödinger Release 2022-3: Maestro. New York: Schrödinger, LLC; 2021.

  27. Webster D, Taschereau P, Belland RJ, Sand C, Rennie RP. Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol. 2008;115:140–6. https://doi.org/10.1016/J.JEP.2007.09.014.

    Article  PubMed  Google Scholar 

  28. Kingsley JD, Abraham J, Kingsley D, Ravikumar G, Chauhan R, Abraham J. Extraction and screening of bioactive metabolites from Vigna mungo against various pathogens. Screening and evaluation of antimicrobial agents from Funaria sp. against various pathogens. Artic Int J Pharm Sci Res. 2014;5:428 (10.13040/IJPSR.0975-8232.5(2).428-31).

    CAS  Google Scholar 

  29. Yan Z, Hua H, Xu Y, Samaranayake LP. Potent antifungal activity of pure compounds from traditional Chinese medicine extracts against six oral candida species and the synergy with fluconazole against azole-resistant Candida albicans. Evid-Based Complement Altern Med. 2012;2012:1–6. https://doi.org/10.1155/2012/106583.

    Article  Google Scholar 

  30. Tsai M, Huang Y, Fang J, Fu Y, Wu P. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS ONE. 2015;10:e0131026. https://doi.org/10.1371/journal.pone.0131026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zanoni I, Crosera M, Pavoni E, Adami G, Costa AL, Lead JR, Filon FL, Zanoni I, Crosera M, Pavoni E, Adami G. Use of single particle ICP-MS to estimate silver nanoparticle penetration through baby porcine mucosa. Nanotoxicology. 2021;15(8):1005–15. https://doi.org/10.1080/17435390.2021.1940338.

    Article  CAS  PubMed  Google Scholar 

  32. Khatoon N, Mishra A, Alam H. Biosynthesis, characterization, and antifungal activity of the silver nanoparticles against pathogenic Candida species. BioNanoSci. 2015;5:65–74. https://doi.org/10.1007/s12668-015-0163-z.

    Article  Google Scholar 

  33. Pansara C, Chan WY, Parikh A, Trott DJ, Mehta T, Mishra R, Garg S. Formulation optimization of chitosan-stabilized silver nanoparticles using in vitro antimicrobial assay. J Pharm Sci. 2018;108:1007–16. https://doi.org/10.1016/j.xphs.2018.09.011.

    Article  CAS  PubMed  Google Scholar 

  34. Kaler A, Mittal AK, Katariya M, Harde H, Agrawal AK, Jain S, Banerjee UC. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles. J Nanoparticle Res. 2014;16:2605. https://doi.org/10.1007/s11051-014-2605-x.

    Article  CAS  Google Scholar 

  35. Kumbhar D, Wavikar P, Vavia P. Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamic activity. AAPS PharmSciTech. 2013;14:1072–82. https://doi.org/10.1208/S12249-013-9986-5/METRICS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech. 2013;14:222–33. https://doi.org/10.1208/s12249-012-9908-y.

    Article  CAS  PubMed  Google Scholar 

  37. François IEJA, Cammue BPA, Borgers M, Ausma J, Dispersyn GD, Thevissen K. Azoles: mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans. Anti-Infective Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Infective Agents). 2006;5:3–13.

    Article  Google Scholar 

  38. Sainaga Jyothi VGS, Ghouse SM, Khatri DK, Nanduri S, Singh SB, Madan J. Lipid nanoparticles in topical dermal drug delivery: does chemistry of lipid persuade skin penetration? J Drug Deliv Sci Technol. 2022;69:103176. https://doi.org/10.1016/J.JDDST.2022.103176.

    Article  CAS  Google Scholar 

  39. Hargrove TY, Friggeri L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger J, York JD, Guengerich FP, Lepesheva GI. Structural analyses of Candida albicans sterol 14 α -demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem. 2017;292:6728–43. https://doi.org/10.1074/jbc.M117.778308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA. 2008;105:488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schrödinger Release 2023-2: LigPrep. New York: Schrödinger, LLC; 2021.

  42. Schrödinger Release 2023-2: Glide. New York: Schrödinger, LLC; 2021.

  43. Fu X, Shi Y, Wang H, Zhao X, Sun Q, Huang Y, Qi T, Lin G. Ethosomal gel for improving transdermal delivery of thymosin β-4. Int J Nanomedicine. 2019;14:9275–84.

  44. Jyothi VGSS, Katta CB, Singothu S, Preeti K, Bhandari V, Singh SB, Madan J. Analysis of the therapeutic efficacy of meloxicam-loaded solid lipid nanoparticles topical gel in Wistar rats knee osteoarthritis. J Drug Deliv Sci Technol. 2022;77:103914.

    Article  CAS  Google Scholar 

  45. Rao KLN, Katari NK. Development of in-vitro release testing method for permethrin cream formulation using Franz Vertical Diffusion Cell apparatus by HPLC. Talanta Open. 2021;4: 100056.

    Article  Google Scholar 

  46. Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A. Comparison of EUCAST and CLSI reference microdilution mics of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother. 2017;61:e00485-17. https://doi.org/10.1128/AAC.00485-17/ASSET/39A1E85F-C5D6-4109-BE31-47CA6D6676DF/ASSETS/GRAPHIC/ZAC0071762660001.JPEG.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–40. https://doi.org/10.1016/j.biomaterials.2009.07.065.

    Article  CAS  PubMed  Google Scholar 

  48. Jadhav K, Dhamecha D, Bhattacharya D, Patil M. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol B, Biol. 2016;155:109–15. https://doi.org/10.1016/j.jphotobiol.2016.01.002.

    Article  CAS  Google Scholar 

  49. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17:1534. https://doi.org/10.3390/ijms17091534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kola M, Vec R, Prucek R, Soukupova J, Hamal P, Zbor R. antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–40. https://doi.org/10.1016/j.biomaterials.2009.07.065.

    Article  CAS  Google Scholar 

  51. Mandial D, Khullar P, Kumar H, Ahluwalia GK, Bakshi MS. Naringin−chalcone bioflavonoid-protected nanocolloids: mode of flavonoid adsorption, a determinant for protein extraction. ACS Omega. 2018;3:15606–14. https://doi.org/10.1021/acsomega.8b01776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parashar P, Rathor M, Dwivedi M, Saraf SA. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10:33. https://doi.org/10.3390/pharmaceutics10010033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen MX, Alexander KS, Baki G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J Pharm. 2016;2016:1–10. https://doi.org/10.1155/2016/5754349.

    Article  CAS  Google Scholar 

  54. Schädle C, Bader-Mittermaier S, Sanahuja S. Characterization of reduced-fat mayonnaise and comparison of sensory perception, rheological, tribological, and textural analyses. Foods. 2022;11:806. https://doi.org/10.3390/foods11060806. (Mdpi.Com).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thakkar R, Ashour EA, Shukla A, Wang R, Chambliss WG, Bandari S, Murthy N, Repka MA. A comparison between lab-scale and hot-melt-extruder-based anti-inflammatory ointment manufacturing. AAPS PharmSciTech. 2020;21:200.

    Article  CAS  PubMed  Google Scholar 

  56. Shah M, Sandler L, Rai V, Sharma C, Raghavan L. Quality of compounded topical 2 % diltiazem hydrochloride formulations for anal fissure. World J Gastroenterol. 2013;19:5645–50. https://doi.org/10.3748/wjg.v19.i34.5645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee SH, Jun B. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20(4):865. https://doi.org/10.3390/ijms20040865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Walker M, Parsons D. The biological fate of silver ions following the use of silver-containing wound care products - a review. Int Wound J. 2014;11:496–504. https://doi.org/10.1111/J.1742-481X.2012.01115.X.

    Article  PubMed  Google Scholar 

  59. Jeni A, Loula M, Mestek O. The effect of silver nanoparticles on the penetration properties of the skin and quantification of their permeation through skin barrier. 2020.

  60. Strushkevich N, Usanov SA, Park HW. Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol. 2010;397:1067–78. https://doi.org/10.1016/j.jmb.2010.01.075.

    Article  CAS  PubMed  Google Scholar 

  61. Lv QZ, Yan L, Jiang YY. The synthesis, regulation, and functions of sterols in Candida albicans: well-known but still lots to learn. Virulence. 2016;7:649–59.

Download references

Acknowledgements

Authors are highly thankful to the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, New Delhi, for providing financial assistance in addition to the Department of Life Sciences, University of Hyderabad, Hyderabad, India, for providing the anti-fungal study facility.

Author information

Authors and Affiliations

Authors

Contributions

Chantibabu Katta: manuscript writing and experimentation; Arbaz Sujat Shaikh and Nagesh Bhale: experimentation; Vaskuri G.S Sainaga Jyothi, Venkata Rao Kaki, Amol G. Dikundwar, Pankaj Kumar Singh, Renu Shukla, and Krishnaveni Mishra: data interpretation; Jitender Madan: manuscript editing and supervision.

Corresponding author

Correspondence to Jitender Madan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 209 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katta, C., Shaikh, A.S., Bhale, N. et al. Naringenin-Capped Silver Nanoparticles Amalgamated Gel for the Treatment of Cutaneous Candidiasis. AAPS PharmSciTech 24, 126 (2023). https://doi.org/10.1208/s12249-023-02581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02581-0

Keywords

Navigation