Skip to main content

Advertisement

Log in

Dapsone-Loaded Mixed Micellar Gel for Treatment OF Acne Vulgaris

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Mixed polymeric micelles are potential nanocarriers for topical drug delivery. Dapsone (DAP) is an antibacterial used as anti-acne agent, but challenged by low water solubility and poor skin permeability. In the present study, DAP-loaded mixed micellar gel was developed comprising Pluronics F-68 and F-127. Micelles were prepared by solvent evaporation method and particle size, ex vivo permeation, drug loading, and entrapment efficiency were determined. Central Composite Design was used to optimize formulation. Independent variables were concentration of Pluronics at three levels while micelle size and drug loading capacities were dependent variables. Droplet size ranged from 400 to 500 nm. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into gel base using HPMC K100M, Sodium CMC, and Carbopol 980 as gelling agents. Gels were evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and subacute dermal toxicity. Compared with solubility of free DAP (0.24+0.056 µg/ml), solubility in mixed micelles was 18.42±3.4 µg/ml in water at room temperature. Order of spreadability of gels was Na CMC < HPMC < Carbopol 980. Carbopol gels displayed thixotropy with index of 3.17. Syneresis for all gels from day 0 to day 30 was found to be in range of 4.2 to 15.6% w/w. Subacute dermal toxicity studies showed no signs of erythema and edema on rat skin until 21 days. These results suggest that mixed micelles can significantly increase solubility and permeability and sustain release of DAP and are suitable carriers for topical DAP delivery in anti-acne therapies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available if required.

References

  1. Ghaoui N, Hanna E, Abbas O, Kibbi AG, Kurban M. Update on the use of dapsone in dermatology. Int J Dermatol. 2020Jul;59(7):787–95.

    Article  CAS  PubMed  Google Scholar 

  2. Lynn D, Umari T, Dunnick C. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;7:13–25.

    PubMed  PubMed Central  Google Scholar 

  3. Skroza N, Tolino E, MambrinS A, Zuber C, Marchesiello A, Bernardini C. Adult acne versus adolescent acne: a retrospective study of 1,167 patients. J Clin AesthetDermatol. 2018; 21-25.

  4. McLaughlin J, Watterson S, Layton A, Bjourson A, Barnard E, McDowell A. Microorganisms. 2019;7(5):128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suppiah T, Sundram, T, Tan E, Lee C. Bustami N, Tan K. Acne vulgaris and its association with dietary intake: a Malaysian perspective. Asia Pac J Clin Nutr. 2018; 275: 11141-5.

  6. Irby C, Yentzer B, Feldman S. A review of adapalene in the treatment of acne vulgaris. Adolesc J Health. 2008;43:421–4.

    Article  Google Scholar 

  7. Parra A, Jarak I, Santos A, Veiga F, Figueiras A. Micelles polymeric: a promising pathway for dermal drug delivery. Materials. 2021;14:7278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hazarika N, Archana M. The psychosocial impact of acne vulgaris. Indian J Dermatol. 2016;61(5):515–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Misery L. Consequences of psychological distress in adolescents with acne. J Invest Dermatol. 2011;131:290–2.

    Article  CAS  PubMed  Google Scholar 

  10. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res. 2014;306(2):103–24.

    Article  CAS  PubMed  Google Scholar 

  11. Radley K, Tucker R. DAP in the management of Acne vulgaris. Derma J Nurses’ Asso. 2013;6:316–9.

    Article  Google Scholar 

  12. Habib R, Abdeltawab and Ibtehals N. D-optimal mixture design for optimization of topical DAPniosomes: in vitro characterization and in vivo activity against Cutibacterium acne. Drug Del. 2022;29: 821-36.

  13. Nickles M and E. Lake. Topical DAP in treatment of acne: a systemic review. Int J Dermatol. 2022;61(11):1412-21.

  14. Vinicius R, Alice S, Adrian R, Lucio M, Valeria P. Nanoemulsion containing DAP for topical administration: a study of in vitro release and epidermal permeation. Int J Nanomed. 2013;8:535–44.

    Google Scholar 

  15. Meraj A, Kanoujia P, Parashar M, Arya A, Yadav and Saraf S. Evaluation of a Polymer-Lipid-Polymer system utilizing hybrid nanoparticles of DAP as a novel antiacne Agent. Curr Drug Ther. 2016;11(2):86-10.

  16. Mahore J, Suryavanshi S, Shirolkar S, Deshkar S. Enhancement of percutaneous delivery of DAP by microemulsion gel. J Young Pharm. 2017;9(4):507–12.

    Article  CAS  Google Scholar 

  17. Rodrigo C, Marchi J, Bergamo V, Fuentefria A, Lavayen V, Guterres S, Pohlmann A, Chitosan-coated dapsone-loaded lipid-core nanocapsules: growth inhibition of clinical isolates, multidrug-resistant Staphylococcus aureus and Aspergillus sp., Coll and Surf A: Physicochem and Engg Aspects. 2016; 511, 153-161.

  18. Mehdi R, Payam K, Pardakhtya A, Tahamipour B, Amanatfar A. Preparation of polyacrylamide/polylactic acid co-assembled core/shell nanofibers as designed beads for dapsone in vitro efficient delivery Artificial Cells. Nanomedicine, And Biotech. 2019;47(1):917–26.

    Article  Google Scholar 

  19. Luis R, Fernandez M, Deb S, Molly M. Stevens, Julio San Roman, Designing dapsone polymer conjugates for controlled drug delivery. Acta Biomater. 2015;27:32–41.

    Article  Google Scholar 

  20. Hemant B, Leena K, KartikN, Vinay V, Kalyani S. Phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical aspects. Studies in Natural Products Chemistry.2019; 63: 415-60.

  21. Tharwat F. Surfactants, Industrial Applications, Robert A. Meyers. Encyclopedia of Physical Science and Technology (Third Edition), Academic Press.2003,423-38.

  22. Chandramani P, Vaidya U, Shashibhal P in Mechanism for development of nanobased drug delivery system, applications of targeted nano drugs and delivery systems ,Nanosci. Nanotech. Drug Del, Micro and Nano Technologies. 2019:35-67.

  23. Lapteva M, Mondon K, Möller M, Gurny R, Kalia Y. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: a targeted approach for the treatment of psoriasis. Mol Pharm. 2014;11:2989–3001.

    Article  CAS  PubMed  Google Scholar 

  24. Makhmalzade B, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018;9(1):2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Park H, Koo N, Shin T, Lee E, Cho S. Development of polymeric micelles of oleanolic acid and evaluation of their clinical efficacy. Nanoscale Res Lett. 2020;15:1–14.

    Google Scholar 

  26. Biniek K, Kaczvinsky J, Matts P, Dauskardt R. Understanding age-induced alterations to the biomechanical barrier function of human stratum corneum. J Dermatol Sci. 2015;80:94–101.

    Article  PubMed  Google Scholar 

  27. Kandekar S, del Río-Sancho S, Lapteva M, Kalia Y. Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale. 2018;10:1099–110.

    Article  CAS  PubMed  Google Scholar 

  28. Chavoshy F, Zadeh B, TamaddonA, Anbardar M. Delivery and anti-psoriatic effect of silibinin-loaded polymeric micelles: an experimental study in the psoriatic skin model. Curr Drug Deliv. 2020;17:787-98.

  29. Shawesh A, Kallioinen S, Hellén L, Antikainen O, Yliruusi J. Pluronic F-127 gels as a vehicle for topical formulations of indomethacin and rheological behaviour of these formulations. Pharmazie. 2002;57(3):186–90.

    CAS  PubMed  Google Scholar 

  30. Alvarado-Gomez E, Martínez-Castañon G, Sanchez R, Ganem-Rondero A, Jose M, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. MatrLSci and Engg: C. 2018;92:621–30.

    CAS  Google Scholar 

  31. Xu J, Wei Z, Jie S, Jia H, Haisheng Q, Xulin C, Xianwen W. Thermosensitive hydrogel loaded with nickel–copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl Mater Interfaces. 2022;14(45):50677–91.

    Article  Google Scholar 

  32. Wang C, Wu B, Wu Y, Song X, Zhang S, Liu Z. Camouflaging nanoparticles with brain metastatic tumor cell membranes: a new strategy to traverse blood–brain barrier for imaging and therapy of brain tumors. AdvFunct Mater. 2020;30:1909369.

    CAS  Google Scholar 

  33. Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric drug delivery system based on pluronics for cancer treatment. Molecules. 2021;26(12):3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trujillo M, Schramm M. Measuring critical micelle concentration as a function of cavity and additives using surface tension and dye micellization. Ronald E McNair Postbac Achiev Program. 2010;14:155–68.

    PubMed  PubMed Central  Google Scholar 

  35. Rao M, Godbole R, Borate S, Mahajan S, Gangwal T. Nanosuspension coated multiparticulates for controlled delivery of albendazole. Drug Dev Ind Pharm. 2021;47(3):367–76.

    Article  CAS  PubMed  Google Scholar 

  36. Ashjari M, Khoee S, Mahdavian A, Rahmatolahzadeh R. Self-assembled nanomicelles using PLGA-PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values. J Matr Sci Matr Med. 2012;23(4):943–53.

    Article  CAS  Google Scholar 

  37. Jaiswal M, Kumar M, Pathak K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Coll Surf B Biointer. 2015;1(30):23–30.

    Article  Google Scholar 

  38. Qumbar M, Ameedu Z, Imam S, Javed A, Ahmad J, Ali A. Formulation and optimization of Lacidipine loaded niosomal gel for transdermal delivery: In vitro characterization and In vivo activity. Biomed Pharmacother. 2017;93:255–66.

    Article  CAS  PubMed  Google Scholar 

  39. https://wiki.anton-paar.com/in-en/basics-of-thixotropy. Accessed on 10.08.2022.

  40. Borman P, Elder D. Q2 (R1) Validation of analytical procedures. ICH Quality guidelines. 2017;5:127–66.

    Article  Google Scholar 

  41. Abd E, Shereen A, Pastore M, Telaprolu K, Mohammed Y, Namjoshi S, Grice J, Roberts M. Skin models for the testing of transdermal drugs clinical pharmacology: advances and Applications. 2016;8:163–76.

    CAS  PubMed  Google Scholar 

  42. OECD (1981) Test no. 410: repeated dose dermal toxicity: 21/28- day study, OECD Guidelines for the testing of Chemicals, Section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070 745-en.

  43. Samhitha K, Dmitry B, Marina T, Paschalis A. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. J Coll and Inter Sci. 2022;609:456–68.

    Article  Google Scholar 

  44. Pedersen J, Gerstenberg M. The structure of P85 Pluronic block copolymer micelles determined by small-angle neutron scattering, Collo.Surf., A 213 (2-3) (2003) 175–187.

  45. Li X, Zhang Y, Fan Y, Zhou Y, Wang X, Fan C, Liu Y, Zhang Q. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol. Nanoscale Res Lett. 2011;6:275.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Milton J, Rosen, Surfactants and interfacial phenomena. Third edition, A John Wiley & Sons, Inc.,John Wiley & Sons, Inc., 2004, 415-427.

  47. Feng J, Wu S, Wang H, Liu S. Stability of trianionic curcumin enhanced by gemini alkyl O-Glucosides and alkyl trimethyl ammonium halides mixed micelles. Colloids Surf A Physicochem Eng Asp. 2016;504:190–200.

    Article  CAS  Google Scholar 

  48. Carlota O, Adalberto P, Leoberta C. Micellar solubilization of drugs. J Pharm Pharmaceu Sci. 2005;8(2):147–63.

    Google Scholar 

  49. Tijana R, Kasagić I, Jovanović M, Stojanović B, Ivanović D. Comparison of full factorial design, central composite design, and Box-Behnken design in chromatographic method development for the determination of fluconazole and its impurities. Anal Lett. 2014;47(8):1334–7.

    Article  Google Scholar 

  50. Oliver R, Lipfert J, Fox D, Lo R, Doniach S, Columbus L. Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS One. 2013;8(5):E62488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dupuy C, Auvray X, Petipas C, Anthore R, Costes F, Rico-Lattes I, Lattes A. Small angle X-ray and neutron scattering study of the micellization of (N-Alkylamino)-1-deoxylactitols in water. Langm. 1996;12:3162–72.

    Article  CAS  Google Scholar 

  52. Charles T. Micelle shape and size. J Phys Chem. 1972;76(21):3020.

    Article  Google Scholar 

  53. Mortensen K. Structural properties of self-assembled polymeric micelles. CurrOpi Coll Interf Sci. 1998;3:12–9.

    Article  CAS  Google Scholar 

  54. Rajak P, Nath L, Bhuyan B. Liquid crystals: an approach in drug delivery. Ind J Pharm Sci. 2019;81(1):11–21.

    Article  CAS  Google Scholar 

  55. Alexandridis P, Zhou D, Khan A. Lyotropic liquid crystallinity in amphiphilic block copolymers: temperature effects on phase behavior and structure for poly(ethylene oxide)- b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers of different composition. Lang. 1996;12:2690–700.

    Article  CAS  Google Scholar 

  56. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh D, Javanmard R, Dokhani A, Khorasani S, Mozafari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bence S, Csóka I, Budai M, Kozma G, Berkesi D, Kónya Z, György B, Katona G. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery. Eur J Pharm Sci. 2021;166:105960.

    Article  Google Scholar 

  58. Kataoka K, Harada A. Yukio Nagasaki, Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Del Rev. 2012;64:37–48.

    Article  Google Scholar 

  59. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453:198–214.

    Article  CAS  PubMed  Google Scholar 

  60. Sushant K, Yogesh C, Nazma I, Vishnukant M. Polymeric micelles: authoritative aspects for drug delivery. Des Monomers Polym. 2012;15(5):465–521.

    Article  Google Scholar 

  61. Zarafshani Z, Akdemir O, Lutz J. A ‘“click”’ strategy for tuning in situ the hydrophilic- hydrophobic balance of AB macrosurfactants. Macromol Rapid Comm. 2008;29:1161–6.

    Article  CAS  Google Scholar 

  62. Hongbo F, Xinyi L, Weiyu W, Nam-Goo K, Jimmy W. Block copolymers: synthesis, self-assembly, and applications. Polymers. 2017;9:494.

    Article  Google Scholar 

  63. Forster S, Plantenberg T. From self-organizing polymers to nanohybrid and biomaterials. Angewandte Chemie International Edition. 2002;41:688–714.

    Article  CAS  Google Scholar 

  64. https://www.sigmaaldrich.com/IN/en/product/sigma/p1300?gclid=Cj0KCQjw54iXBhCXARIsADWpsG9sCOtkPORIdSHREVKnq756sj7LZc2uzl_yxASiYBXR3qhU4jC02UkaAiWuEALw_wcB) [Accessed on 3.08.2022].

  65. https://www.sigmaaldrich.com/IN/en/product/sigma/p2443?gclid=Cj0KCQjw54iXBhCXARIsADWpsG-01oteQfqulJ_7mUk80wgoPGxL_i7AJelCCkDaUYhMsQ9QyadAI0aAuHxEALw_wcB [ Accessed on 3.08.2022].

  66. Sinko P, Martin A. Measurement of thixotropy in Martin's Physical Pharmacy and Pharmaceutical Sciences, 5th ed., Lippincott Williams & Wilkins, 2005,567.

  67. Chi L, Venkat M, Yugyung L. Thixotropic property in pharmaceutical formulations. J Contr Rel. 2009;136:88–98.

    Article  Google Scholar 

  68. https://www.corrosionpedia.com/definition/2526/thixotropic-index-ti [Accessed on 10.08.2022].

  69. A.S. Lubansky in Chapter: Medical Biotechnology and Healthcare, in Comprehensive Biotechnology, 2nd edition, Volume 5. 2011, ed: Murray Moo Young, Elsevier Publications, Boston USA, 189-201.

  70. Antonio F, Iván J, Sierra B, Fernández A, Javier F, Manuel M, Rubio J, Enrique L. Gels andmicrogels for nanotechnological applications. Adv Coll Interf Sci. 2009;147–148:88–108.

    Google Scholar 

  71. Zhao Z, Wang Q, Zhang L, Wu T. Structured water and water-polymer interactions in hydrogels of molecularly imprinted polymers. J Phys Chem B. 2008;112(25):7515–21.

    Article  CAS  PubMed  Google Scholar 

  72. Björn L, Gunnar K, Lars S. On the mechanism of dissolution of cellulose. J Mol Liq. 2010;156(1):76–81.

    Article  Google Scholar 

  73. Ali K, Sylvain R. Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling. J Nanomat. 2013, Article ID 409676.

  74. Conti S, Maggi L, Segale L, Ochoa Machiste E, Conte U, Grenier P, Vergnault G. Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study. Int J Pharm. 2007, 21;333(1-2):143-51.

  75. Safitri F, Nawangsari D, Febrina D. Overview: application of Carbopol 940 in Gel. Advances in Health Sciences Research, Volume 34 Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020), 80-84.

  76. Zheng Y, Ouyang W, Wei Y, Syed S, Hao C, Wang B, Shang Y. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine. 2016;11:5971–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shegaokar, R. Souto, E. ‘Skin penetration of nanoparticles’ in emerging nanotechnologies in immunology; Eds. Nafisi S, Maibach H, 2018, Elsevier Publications, Boston, MA, USA, 47–88.

  78. Güngör S, Kahraman E. Nanocarriers mediated cutaneous drug delivery. Eur J Pharm Sci. 2021;158:105638.

    Article  PubMed  Google Scholar 

  79. Dahmana N, Mugnier T, Gabriel D, Favez T, Kowalczuk L, Behar-Cohen F, Gurny R, Kalia YN. Polymeric micelle mediated follicular delivery of spironolactone: targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. Int J Pharm. 2021;604:120773.

    Article  CAS  PubMed  Google Scholar 

  80. Kahraman E, Ÿzhan G, Ÿzsoy Y, Güngör S. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Coll Surf B Bioin. 2016;146:692–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, for their support for TEM analysis of sample. The authors would also like to thank Dr. Makarand Kulkarni, Scientific Expert, Instrumentation Center, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, for the residual solvent analysis by GC-MS.

Funding

This work is self-funded and it has not received funding from any government or nongovernment sources.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Monica RP Rao: conceptualization; data curation, writing—review and editing.

Mr. Sushant Deshpande: formal analysis, investigation; methodology; resources; software

Dr. Padmanabh Deshpande: supervision; validation; visualization

Corresponding author

Correspondence to Monica RP Rao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.R., Deshpande, S. & Deshpande, P. Dapsone-Loaded Mixed Micellar Gel for Treatment OF Acne Vulgaris. AAPS PharmSciTech 24, 109 (2023). https://doi.org/10.1208/s12249-023-02564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02564-1

Keywords

Navigation